Position specificity in n-hexane hydroxylation by two forms of cytochrome P-450 in rat liver microsomes. 1983

K Morohashi, and H Sadano, and Y Okada, and T Omura

The hydroxylation of n-hexane by rat liver microsomes was studied and the contribution of different molecular species of cytochrome P-450 to the hydroxylation reaction was examined. In the case of untreated rats, the products of NADPH-dependent n-hexane hydroxylation were 1-, 2-, and 3-hexanols, and the major one was 2-hexanol. Phenobarbital (PB) treatment of animals resulted in a significant increase of the hydroxylation activity. The formation of 2- and 3-hexanols was much more significantly increased than that of 1-hexanol. On the other hand, 3-methylcholanthrene (MC) treatment stimulated the formation of 3-hexanol and the formation of the other two isomeric alcohols was rather decreased. These observations suggested the position specificities of the PB-inducible form (P-450(PB)) and MC-inducible form (P-450(MC)) of cytochrome P-450 in the hydroxylation of n-hexane. Inhibition experiments using antibodies specific to P-450(PB) and P-450(MC) also indicated that P-450(PB) was more active in the hydroxylation at the 2-position whereas P-450(MC) was more specific for the 3-position. NADPH-dependent n-hexane hydroxylation systems were reconstituted by the use of purified NADPH-cytochrome P-450 reductase and P-450(PB) or P-450(MC), and the activities of the reconstituted systems supported the proposed position specificities of these two forms of cytochrome P-450 in n-hexane hydroxylation.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006586 Hexanes Six-carbon saturated hydrocarbon group of the methane series. Include isomers and derivatives. Various polyneuropathies are caused by hexane poisoning. Hexane,Isohexane,Isohexanes
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Morohashi, and H Sadano, and Y Okada, and T Omura
January 1990, Drug metabolism and disposition: the biological fate of chemicals,
K Morohashi, and H Sadano, and Y Okada, and T Omura
November 1986, Biochemical pharmacology,
K Morohashi, and H Sadano, and Y Okada, and T Omura
July 1990, Biokhimiia (Moscow, Russia),
K Morohashi, and H Sadano, and Y Okada, and T Omura
January 1993, Drug metabolism and disposition: the biological fate of chemicals,
K Morohashi, and H Sadano, and Y Okada, and T Omura
October 1984, The Journal of pharmacology and experimental therapeutics,
K Morohashi, and H Sadano, and Y Okada, and T Omura
April 1986, Chemico-biological interactions,
K Morohashi, and H Sadano, and Y Okada, and T Omura
July 1974, Biochimica et biophysica acta,
K Morohashi, and H Sadano, and Y Okada, and T Omura
June 1972, La Nouvelle presse medicale,
K Morohashi, and H Sadano, and Y Okada, and T Omura
August 1989, Biulleten' eksperimental'noi biologii i meditsiny,
K Morohashi, and H Sadano, and Y Okada, and T Omura
February 1975, FEBS letters,
Copied contents to your clipboard!