Role of calcium in osmotic and nonosmotic release of vasopressin from rat organ culture. 1983

S Ishikawa, and R W Schrier

In the present study the role of calcium (Ca) in the stimulation of arginine vasopressin (AVP) release from the cultured rat hypothalamoneurohypophyseal complex (HNC) was examined in response to three different stimuli, 56 mM potassium chloride, an increase in medium osmolality from 290 to 310 mosmol/kg H2O, or 1 X 10(-6) M angiotensin II (ANG II). With all three stimuli AVP release from rat HNC explants was enhanced by increasing Ca concentration in the medium from 0 to 1.8 mM Ca. However, high concentrations of Ca (8 mM) inhibited the response of AVP release to either hyperosmolality or angiotensin II. Chemically dissimilar blockers of cellular Ca uptake, verapamil (5.2 X 10(-6) or 5.2 X 10(-5) M) or nifedipine (5.8 X 10(-6) or 5.8 X 10(-5) M), completely abolished AVP release from rat HNC explants in response to the three different stimuli in 1.8 mM Ca. In a normal concentration of medium Ca (1.8 mM) a Ca ionophore, A23187 (3.8 X 10(-5) M), significantly enhanced the osmotic and nonosmotic (ANG II-stimulated) release of AVP from rat HNC explants compared with controls without Ca ionophore. This effect of Ca ionophore to enhance AVP release was more evident in a lower Ca medium (0.9 mM Ca in the hyperosmolality study and 0.3 mM Ca in the ANG II study). These results therefore indicate that cellular Ca uptake is an important modulator of osmotic and nonosmotic AVP release from the intact rat hypothalamoneurohypophyseal system. The influence of extracellular Ca on the osmotic and nonosmotic release of AVP is also demonstrated.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Ishikawa, and R W Schrier
April 1979, The American journal of physiology,
S Ishikawa, and R W Schrier
December 1987, The Journal of clinical endocrinology and metabolism,
S Ishikawa, and R W Schrier
June 1986, The American journal of physiology,
S Ishikawa, and R W Schrier
January 1987, The American journal of physiology,
S Ishikawa, and R W Schrier
March 1991, The American journal of physiology,
S Ishikawa, and R W Schrier
June 2008, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!