Genetic toxicology of ethylenediaminetetraacetic acid (EDTA). 1983

K Heindorff, and O Aurich, and A Michaelis, and R Rieger

EDTA and its salts have a number of applications in medicine and pharmacy. EDTA is used to remove calcium from the human body, and serves as an anticoagulant and as a detoxicant after poisoning by heavy metals. It is often used in analytical chemistry for complexometric titrations and many other purposes. Because the compound is of rather low toxicity, it is used as a food additive to bind metal ions. EDTA affects the inhibition of DNA synthesis in primary cultures of mammalian cells. This may be due to impairment of enzymes involved in DNA replication. Some early studies have shown that EDTA leads to morphological changes of chromatin and chromosome structure in plant and animal cells. These alterations consist of dispersion or swelling of chromosomes or a loss of interphase chromatin structure. For several test systems, a low chromosome-breaking activity of EDTA has been reported. A weak activity in the induction of gene mutations has also been observed. It is well established that EDTA influences chromosome breakage by mutagenic agents. In particular, when applied in combination with chemical mutagens, EDTA enhances mutagen-induced aberration frequencies. Furthermore, the chelating agent is able to increase the incidence of meiotic crossing-over. This has been demonstrated for many gene loci in Drosophila melanogaster, Chlamydomonas reinhardi, Neurospora crassa and Zea mays. EDTA interferes with DNA repair processes that take place after exposure to mutagens. In E. coli or Micrococcus radiodurans as well as in Chinese hamster cells, the fast repair component detectable after treatment with ionizing radiation or bleomycin is inhibited by EDTA. In plant cells exposed to gamma-rays, EDTA inhibits unscheduled DNA synthesis. The mechanism by which EDTA causes these effects remains poorly understood. The sequestering of metal ions by the chelating agent is obviously responsible for functional and structural alterations of the genetic material. Although EDTA produces a whole set of genetic effects it seems to be a harmless compound to man as far as genotoxicity is concerned. The data presently at hand, however, are not sufficient for a reliable risk assessment.

UI MeSH Term Description Entries
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Heindorff, and O Aurich, and A Michaelis, and R Rieger
June 1998, Thrombosis research,
K Heindorff, and O Aurich, and A Michaelis, and R Rieger
June 1965, The Journal of nutrition,
K Heindorff, and O Aurich, and A Michaelis, and R Rieger
October 1961, Journal of pharmaceutical sciences,
K Heindorff, and O Aurich, and A Michaelis, and R Rieger
January 1978, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
K Heindorff, and O Aurich, and A Michaelis, and R Rieger
October 2014, Journal of clinical and diagnostic research : JCDR,
K Heindorff, and O Aurich, and A Michaelis, and R Rieger
January 1997, Lijecnicki vjesnik,
K Heindorff, and O Aurich, and A Michaelis, and R Rieger
March 2023, Annals of clinical biochemistry,
K Heindorff, and O Aurich, and A Michaelis, and R Rieger
July 1968, Das Deutsche Gesundheitswesen,
K Heindorff, and O Aurich, and A Michaelis, and R Rieger
December 1967, Das Deutsche Gesundheitswesen,
K Heindorff, and O Aurich, and A Michaelis, and R Rieger
January 1992, Internal medicine (Tokyo, Japan),
Copied contents to your clipboard!