Characterization of discoidal complexes of phosphatidylcholine, apolipoprotein A-I and cholesterol by gradient gel electrophoresis. 1983

A V Nichols, and E L Gong, and P J Blanche, and T M Forte

Complexes of egg yolk phosphatidylcholine and apolipoprotein A-I were prepared by a detergent (sodium cholate)-dialysis method and characterized by gradient gel electrophoresis, gel filtration, electron microscopy and chemical analysis. Multicomponent electrophoretic patterns were obtained indicating formation of at least eight classes of discoidal complexes. The relative contribution of the different classes to the electrophoretic pattern was a function of the molar ratio of phosphatidylcholine:apolipoprotein A-I in the interaction mixture. Molar ratios of phosphatidylcholine:apolipoprotein A-I in isolated complexes were strongly and positively correlated with disc diameter obtained by electron microscopy. Incorporation of unesterified cholesterol into phosphatidylcholine/apolipoprotein A-I interaction mixtures also resulted in formation of unique complexes but with considerably different particle size distributions relative to those observed in the absence of cholesterol. One common consequence of cholesterol incorporation into interaction mixtures of 87.5:1 and 150:1 molar ratio of phosphatidylcholine:apolipoprotein A-I was the disappearance of a major complex class with diameter of 10.8 nm and the appearance of a major component with diameter of approximately 8.8 nm. Electrophoretic patterns of cholesterol-containing complexes showed a strong similarity to patterns recently published for high density lipoproteins from plasma of lecithin:cholesterol acyltransferase-deficient subjects, suggesting that the complexes formed in vitro by the detergent-dialysis method may serve as appropriate models for investigation of the origins of the HDL particle size distribution.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004530 Egg Yolk Cytoplasm stored in an egg that contains nutritional reserves for the developing embryo. It is rich in polysaccharides, lipids, and proteins. Egg Yolks,Yolk, Egg,Yolks, Egg
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001053 Apolipoproteins Protein components on the surface of LIPOPROTEINS. They form a layer surrounding the hydrophobic lipid core. There are several classes of apolipoproteins with each playing a different role in lipid transport and LIPID METABOLISM. These proteins are synthesized mainly in the LIVER and the INTESTINES. Apolipoprotein
D016632 Apolipoprotein A-I The most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. This protein serves as an acceptor for CHOLESTEROL released from cells thus promoting efflux of cholesterol to HDL then to the LIVER for excretion from the body (reverse cholesterol transport). It also acts as a cofactor for LECITHIN CHOLESTEROL ACYLTRANSFERASE that forms CHOLESTEROL ESTERS on the HDL particles. Mutations of this gene APOA1 cause HDL deficiency, such as in FAMILIAL ALPHA LIPOPROTEIN DEFICIENCY DISEASE and in some patients with TANGIER DISEASE. Apo A-I,Apo A-1,Apo A-I Isoproteins,Apo A1,Apo AI,ApoA-1,ApoA-I,Apolipoprotein A-1,Apolipoprotein A-I Isoprotein-2,Apolipoprotein A-I Isoprotein-4,Apolipoprotein A-I Isoproteins,Apolipoprotein A1,Apolipoprotein AI,Apolipoprotein AI Propeptide,Pro-Apo A-I,Pro-Apolipoprotein A-I,Proapolipoprotein AI,Apo A I Isoproteins,Apolipoprotein A 1,Apolipoprotein A I,Apolipoprotein A I Isoprotein 2,Apolipoprotein A I Isoprotein 4,Apolipoprotein A I Isoproteins,Pro Apo A I,Pro Apolipoprotein A I

Related Publications

A V Nichols, and E L Gong, and P J Blanche, and T M Forte
August 1991, Journal of lipid research,
A V Nichols, and E L Gong, and P J Blanche, and T M Forte
September 1986, Biochimica et biophysica acta,
A V Nichols, and E L Gong, and P J Blanche, and T M Forte
March 1987, The Journal of biological chemistry,
Copied contents to your clipboard!