Reduction of cytochrome P-450 LM2 by NADPH in reconstituted phospholipid vesicles is dependent on membrane charge. 1983

M Ingelman-Sundberg, and J Blanck, and G Smettan, and K Ruckpaul

The kinetics of the reduction of cytochrome P-450 LM2 mediated by NADPH-cytochrome P-450 reductase in reconstituted phospholipid vesicles was examined. An inefficient reduction of the hemoprotein in phosphatidylcholine vesicles was observed. However, by introducing negatively charged phospholipids into the membrane, the rate of reduction increased in a concomitant manner to the resulting net negative charge of the vesicles. In the presence of benzphetamine, the extent of cytochrome P-450 LM2 reduced 1 s after the addition of NADPH to the system was a linear function of the electrophoretic mobilities of the vesicles used. A similar relationship between the net negative charge of the vesicles, as measured electrophoretically, and the reduction rate was also attained in the absence of substrate. The enhanced reduction was mainly reflected in an altered phase distribution of the reduction; the extent of fast phase reduction in the absence or in the presence of added substrate was dependent upon the electrophoretic mobilities of the vesicles. A similar change in the distribution of the reduction phases was observed upon decreasing the phosphatidylcholine content of the vesicles; the fast phase reduction being more pronounced in membranes with higher relative amounts of the protein components. A decrease of the rate of O-demethylation of p-nitroanisole catalyzed by P-450 LM2 parallel to the extent of fast phase reduction was observed upon dilution of neutral phosphatidylcholine membranes with phospholipid. By contrast, no effect of lipid dilution was evident in negatively charged membranes. The results are consistent with the hypothesis that the extent of fast phase reduction is governed by the amount of complex formed between NADPH-cytochrome P-450 reductase and cytochrome P-450 in the membranes; negative membranes appear to favor the formation of such complexes, whereas similar complexes are less formed, or are not functional, in neutral membranes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D009575 Nitroanisole O-Demethylase Oxidative enzyme which transforms p-nitroanisole into p-nitrophenol. Nitroanisole O Demethylase,Demethylase, Nitroanisole O,O Demethylase, Nitroanisole,O-Demethylase, Nitroanisole
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries

Related Publications

M Ingelman-Sundberg, and J Blanck, and G Smettan, and K Ruckpaul
July 1983, Biochemistry,
M Ingelman-Sundberg, and J Blanck, and G Smettan, and K Ruckpaul
August 1984, Biochemical pharmacology,
M Ingelman-Sundberg, and J Blanck, and G Smettan, and K Ruckpaul
January 1988, The Journal of biological chemistry,
M Ingelman-Sundberg, and J Blanck, and G Smettan, and K Ruckpaul
January 1988, Biomedica biochimica acta,
M Ingelman-Sundberg, and J Blanck, and G Smettan, and K Ruckpaul
August 1988, Biochemistry,
M Ingelman-Sundberg, and J Blanck, and G Smettan, and K Ruckpaul
June 1982, The Journal of biological chemistry,
M Ingelman-Sundberg, and J Blanck, and G Smettan, and K Ruckpaul
June 1981, The Journal of biological chemistry,
M Ingelman-Sundberg, and J Blanck, and G Smettan, and K Ruckpaul
September 1987, Biochemical and biophysical research communications,
M Ingelman-Sundberg, and J Blanck, and G Smettan, and K Ruckpaul
July 1990, Molecular pharmacology,
M Ingelman-Sundberg, and J Blanck, and G Smettan, and K Ruckpaul
May 1980, The Journal of biological chemistry,
Copied contents to your clipboard!