The pH dependence of the hydration of CO2 catalyzed by carbonic anhydrase III from skeletal muscle of the cat. Steady state and equilibrium studies. 1983

C Tu, and G Sanyal, and G C Wynns, and D N Silverman

We have measured the pH dependence of the kinetics of CO2 hydration catalyzed by carbonic anhydrase III from the skeletal muscle of the cat. Two methods were used: an initial velocity study in which the change in absorbance of a pH indicator was measured in a stopped flow spectrophotometer, and an equilibrium study in which the rate of exchange of 18O between CO2 and H2O was measured with a mass spectrometer. We have found that the steady state constants kCO2 cat and KCO2 m are independent of pH within experimental error in the range of pH 5.0 to 8.5; the rate of release from the enzyme of the oxygen abstracted from substrate HCO-3 in the dehydration is also independent of pH in this range. This behavior is very different from that observed for carbonic anhydrase II for which kCO2 cat and the rate of release of substrate oxygen are very pH-dependent. The rate of interconversion of CO2 and HCO-3 at equilibrium catalyzed by carbonic anhydrase III is not altered when the solvent is changed from H2O to 98% D2O and 2% H2O. Thus, the interconversion probably proceeds without proton transfer in its rate-limiting steps, similar to isozymes I and II.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010103 Oxygen Isotopes Stable oxygen atoms that have the same atomic number as the element oxygen, but differ in atomic weight. O-17 and 18 are stable oxygen isotopes. Oxygen Isotope,Isotope, Oxygen,Isotopes, Oxygen
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002256 Carbonic Anhydrases A family of zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide. They play an important role in the transport of CARBON DIOXIDE from the tissues to the LUNG. EC 4.2.1.1. Carbonate Dehydratase,Carbonic Anhydrase,Anhydrases, Carbonic,Dehydratase, Carbonate
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid

Related Publications

C Tu, and G Sanyal, and G C Wynns, and D N Silverman
January 1984, Annals of the New York Academy of Sciences,
C Tu, and G Sanyal, and G C Wynns, and D N Silverman
March 1985, The Journal of biological chemistry,
C Tu, and G Sanyal, and G C Wynns, and D N Silverman
March 1992, Biochimica et biophysica acta,
C Tu, and G Sanyal, and G C Wynns, and D N Silverman
December 1986, Biochemistry,
C Tu, and G Sanyal, and G C Wynns, and D N Silverman
August 1986, The Journal of biological chemistry,
C Tu, and G Sanyal, and G C Wynns, and D N Silverman
October 2003, Biotechnology and applied biochemistry,
C Tu, and G Sanyal, and G C Wynns, and D N Silverman
October 1982, Biochemical and biophysical research communications,
C Tu, and G Sanyal, and G C Wynns, and D N Silverman
January 1986, The Journal of biological chemistry,
C Tu, and G Sanyal, and G C Wynns, and D N Silverman
October 1979, Biochemical genetics,
C Tu, and G Sanyal, and G C Wynns, and D N Silverman
September 1984, Biochimica et biophysica acta,
Copied contents to your clipboard!