Studies on the mechanism of the selective suppression of plasma levels of follicle-stimulating hormone in the female rat after administration of steroid-free bovine follicular fluid. 1983

W J de Greef, and F H de Jong, and J de Koning, and J Steenbergen, and P D van der Vaart

Steroid-free bovine follicular fluid (bFF) selectively suppresses the plasma levels of FSH in the female rat, demonstrating that bFF contains inhibin-like material. The present study was concerned with the effects of bFF on the hypothalamic release of LH releasing hormone (LH-RH) into hypophysial stalk blood and on the metabolic clearance rates of gonadotrophins. The metabolic clearance rates of FSH, LH and prolactin were determined after a single injection of and during a constant infusion with adenohypophysial extract. Similar results were obtained with both methods, and treatment with bFF did not alter the metabolic clearance rates of FSH, LH and prolactin. Anaesthesia with urethane, used for surgery involved in the collection of hypophysial stalk blood, did not interfere with the effect of bFF on plasma levels of FSH. The administration of bFF did not change the hypothalamic content of LH-RH, but caused a 30% decrease in the levels of LH-RH in hypophysial stalk plasma. However, a fraction isolated from bFF, which contained 20 times more inhibin-like activity per mg protein than bFF, did not alter the hypothalamic release of LH-RH into the hypophysial portal blood while this fraction was effective in specifically suppressing the plasma levels of FSH. It was concluded that the inhibin-like activity in bFF does not suppress the plasma levels of FSH by affecting its plasma clearance or by influencing the hypothalamic release of LH-RH, but that it has a direct effect on the adenohypophysis in inhibiting the release of FSH. Besides the inhibin-like activity, bFF also contains another factor which can decrease the levels of LH-RH in hypophysial stalk plasma.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001826 Body Fluids Liquid components of living organisms. Body Fluid,Fluid, Body,Fluids, Body
D005260 Female Females
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles

Related Publications

W J de Greef, and F H de Jong, and J de Koning, and J Steenbergen, and P D van der Vaart
October 1983, The Journal of endocrinology,
W J de Greef, and F H de Jong, and J de Koning, and J Steenbergen, and P D van der Vaart
July 1992, Nihon Sanka Fujinka Gakkai zasshi,
W J de Greef, and F H de Jong, and J de Koning, and J Steenbergen, and P D van der Vaart
March 1984, Biology of reproduction,
W J de Greef, and F H de Jong, and J de Koning, and J Steenbergen, and P D van der Vaart
July 1979, Endocrinology,
W J de Greef, and F H de Jong, and J de Koning, and J Steenbergen, and P D van der Vaart
August 1989, Journal of dairy science,
W J de Greef, and F H de Jong, and J de Koning, and J Steenbergen, and P D van der Vaart
November 1978, Endocrinology,
W J de Greef, and F H de Jong, and J de Koning, and J Steenbergen, and P D van der Vaart
October 1982, Journal of animal science,
W J de Greef, and F H de Jong, and J de Koning, and J Steenbergen, and P D van der Vaart
January 2022, Animal science journal = Nihon chikusan Gakkaiho,
W J de Greef, and F H de Jong, and J de Koning, and J Steenbergen, and P D van der Vaart
January 1973, Physiologia Bohemoslovaca,
W J de Greef, and F H de Jong, and J de Koning, and J Steenbergen, and P D van der Vaart
November 1977, Endocrinology,
Copied contents to your clipboard!