Drift in ultraviolet sensitivity and expression of mutations during synchronous growth of cyanobacterium Anacystis nidulans. 1983

D V Amla

Synchrony with respect to cell division and DNA synthesis in cultures of Anacystis nidulans was induced by a light-dark-light regimen. At periodic intervals in the cell-division cycle, DNA, RNA, protein contents, UV sensitivity and induction of mutations were assayed. The DNA, RNA and protein syntheses were periodic and reached maximal values before the separation of cells. The DNA content started to increase at about the 5th hour and doubled at about the 13th hour followed by a plateau of 4-6 h. Wild-type A. nidulans was highly sensitive to UV radiation during the period showing an increase in cell number (rise phase) and the early part of DNA synthesis (synthetic phase). Significant resistance to UV, however, developed in the later stage of the DNA synthesis. This resistance decreased considerably during the next rise phase. On the other hand, in a UV-sensitive strain of A. nidulans (uvs67) there was no appreciable change in the UV sensitivity during the cell-division and DNA-synthesis phases. Induction of mutation frequency patterns of all the markers (fil, blu, yel, vir, nit, strR) in the wild-type showed a short initial lag followed by an abrupt increase resulting in a peak of mutation frequency in the early part of DNA synthesis and subsequently a second plateau. The induction of mutation frequencies in the uvs67 strain was comparatively low and remained constant throughout the cell division cycle. These results suggest the possibilities of an error-prone dark repair and a stringent relationship between DNA replication and repair of UV damage for expression of mutations in cyanobacterium A. nidulans.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
Copied contents to your clipboard!