Ribulose bisphosphate carboxylase/oxygenase in toluene-permeabilized Rhodospirillum rubrum. 1983

I Storrø, and B A McFadden

Toluene-permeabilized Rhodospirillum rubrum cells were used to study activation of and catalysis by the dual-function enzyme ribulose bisphosphate carboxylase/oxygenase. Incubation with CO2 provided as HCO3-, followed by rapid removal of CO2 at 2 degrees C and subsequent incubation at 30 degrees C before assay, enabled a determination of decay rates of the carboxylase and the oxygenase. Half-times at 30 degrees C with 20 mM-Mg2+ were 10.8 and 3.7 min respectively. Additionally, the concentrations of CO2 required for half-maximal activation were 56 and 72 microM for the oxygenase and the carboxylase respectively. After activation and CO2 removal, inactivation of ribulose bisphosphate oxygenase in the presence of 1 mM- or 20mM-Mn2+ was slower than that with the same concentrations of Co2+ or Mg2+. Only the addition of Mg2+ supported ribulose bisphosphate carboxylase activity, as Mn2+, Co2+ and Ni2+ had no effect. A pH increase after activation in the range 6.8-8.0 decreased the stability of the carboxylase but in the range 7.2-8.0 increased the stability of the oxygenase. With regard to catalysis. Km values for ribulose 1,5-bisphosphate4- were 1.5 and 67 microM for the oxygenase and the carboxylase respectively, and 125 microM for O2. Over a broad range of CO2 concentrations in the activation mixture, the pH optima were 7.8 and 8-9.2 for the carboxylase and the oxygenase respectively. The ratio of specific activities was constant (9:1 for the carboxylase/oxygenase) of ribulose bisphosphate carboxylase/oxygenase in toluene-treated Rsp. rubrum. Below concentrations of 10 microM-CO2 in the activation mixture, this ratio increased.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D012247 Rhodospirillum rubrum Vibrio- to spiral-shaped phototrophic bacteria found in stagnant water and mud exposed to light.
D012273 Ribulose-Bisphosphate Carboxylase A carboxy-lyase that plays a key role in photosynthetic carbon assimilation in the CALVIN-BENSON CYCLE by catalyzing the formation of 3-phosphoglycerate from ribulose 1,5-biphosphate and CARBON DIOXIDE. It can also utilize OXYGEN as a substrate to catalyze the synthesis of 2-phosphoglycolate and 3-phosphoglycerate in a process referred to as photorespiration. Carboxydismutase,Ribulose Biphosphate Carboxylase-Oxygenase,Ribulose Diphosphate Carboxylase,Ribulosebiphosphate Carboxylase,Rubisco,1,5-Biphosphate Carboxylase-Oxygenase,Ribulose Biphosphate Carboxylase,Ribulose Bisphosphate Carboxylase,Ribulose-1,5-Biphosphate Carboxylase,Ribulose-1,5-Biphosphate Carboxylase-Oxygenase,Ribulose-1,5-Bisphosphate Carboxylase Small-Subunit,Ribulose-Bisphosphate Carboxylase Large Subunit,Ribulose-Bisphosphate Carboxylase Small Subunit,Rubisco Small Subunit,1,5 Biphosphate Carboxylase Oxygenase,Biphosphate Carboxylase-Oxygenase, Ribulose,Carboxylase Small-Subunit, Ribulose-1,5-Bisphosphate,Carboxylase, Ribulose Bisphosphate,Carboxylase, Ribulose Diphosphate,Carboxylase, Ribulose-1,5-Biphosphate,Carboxylase, Ribulose-Bisphosphate,Carboxylase, Ribulosebiphosphate,Carboxylase-Oxygenase, 1,5-Biphosphate,Carboxylase-Oxygenase, Ribulose Biphosphate,Carboxylase-Oxygenase, Ribulose-1,5-Biphosphate,Diphosphate Carboxylase, Ribulose,Ribulose 1,5 Biphosphate Carboxylase,Ribulose 1,5 Biphosphate Carboxylase Oxygenase,Ribulose 1,5 Bisphosphate Carboxylase Small Subunit,Ribulose Biphosphate Carboxylase Oxygenase,Ribulose Bisphosphate Carboxylase Large Subunit,Ribulose Bisphosphate Carboxylase Small Subunit,Small Subunit, Rubisco,Small-Subunit, Ribulose-1,5-Bisphosphate Carboxylase

Related Publications

I Storrø, and B A McFadden
September 1974, Biochemical and biophysical research communications,
I Storrø, and B A McFadden
September 1984, The Journal of biological chemistry,
I Storrø, and B A McFadden
January 1986, Journal of molecular biology,
I Storrø, and B A McFadden
March 1998, Protein science : a publication of the Protein Society,
I Storrø, and B A McFadden
August 1974, Biochemical and biophysical research communications,
I Storrø, and B A McFadden
May 1979, Biochemical and biophysical research communications,
I Storrø, and B A McFadden
January 1985, The Journal of biological chemistry,
I Storrø, and B A McFadden
December 1988, Journal of bacteriology,
Copied contents to your clipboard!