Changes in T-cell subsets in patients with rheumatoid arthritis treated with total lymphoid irradiation. 1983

B L Kotzin, and G S Kansas, and E G Engleman, and R T Hoppe, and H S Kaplan, and S Strober

Patients with intractable rheumatoid arthritis (RA) were treated with total lymphoid irradiation (TLI, 2000 rads). We previously reported long-lasting clinical improvement associated with marked suppression of in vitro lymphocyte function in this group. In an attempt to better understand the mechanism of immunosuppression and clinical changes observed after TLI, we studied in greater detail changes in peripheral blood T-cell subsets identified by monoclonal antibodies. Before TLI, RA patients had a higher percentage of Leu-3 (helper subset) cells and a lower percentage of Leu-2 (suppressor/cytotoxic subset) cells than normals. Immediately after TLI, the absolute numbers of both Leu-2 and Leu-3 cells were reduced by at least 90%. Within 6-12 weeks, the number of Leu-2 cells returned to the pretreatment levels, but the levels of Leu-3 cells remained depressed for months thereafter. The lack of repopulation of Leu-3 cells resulted in a marked increase in the ratio of Leu-2 to Leu-3 cells as compared to pretreatment values (1.73 +/- 0.23 vs 0.39 +/- 0.06), and in a decrease in the percentage and absolute number of total T (Leu-1 and Leu-4) cells. The failure of Leu-3 cells (which mediate predominantly helper/inducer functions) to repopulate the peripheral blood may contribute to the prolonged clinical immunosuppression observed after TLI. Similar changes in T-cell subsets were not observed in RA patients given remittive drugs or low doses (200 rads) of radiotherapy. Thus, TLI differs from other treatment modalities with regard to its prolonged selective effect on the Leu-3 subset.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008221 Lymphoid Tissue Specialized tissues that are components of the lymphatic system. They provide fixed locations within the body where a variety of LYMPHOCYTES can form, mature and multiply. The lymphoid tissues are connected by a network of LYMPHATIC VESSELS. Lymphatic Tissue,Lymphatic Tissues,Lymphoid Tissues,Tissue, Lymphatic,Tissue, Lymphoid,Tissues, Lymphatic,Tissues, Lymphoid
D008231 Lymphopenia Reduction in the number of lymphocytes. Lymphocytopenia,Lymphocytopenias,Lymphopenias
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D006684 HLA-DR Antigens A subclass of HLA-D antigens that consist of alpha and beta chains. The inheritance of HLA-DR antigens differs from that of the HLA-DQ ANTIGENS and HLA-DP ANTIGENS. HLA-DR,Antigens, HLA-DR,HLA DR Antigens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D000949 Histocompatibility Antigens Class II Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen. Antigens, Immune Response,Class II Antigens,Class II Histocompatibility Antigen,Class II Major Histocompatibility Antigen,Ia Antigens,Ia-Like Antigen,Ia-Like Antigens,Immune Response Antigens,Immune-Associated Antigens,Immune-Response-Associated Antigens,MHC Class II Molecule,MHC II Peptide,Class II Antigen,Class II Histocompatibility Antigens,Class II MHC Proteins,Class II Major Histocompatibility Antigens,Class II Major Histocompatibility Molecules,I-A Antigen,I-A-Antigen,IA Antigen,MHC Class II Molecules,MHC II Peptides,MHC-II Molecules,Antigen, Class II,Antigen, I-A,Antigen, IA,Antigen, Ia-Like,Antigens, Class II,Antigens, Ia,Antigens, Ia-Like,Antigens, Immune-Associated,Antigens, Immune-Response-Associated,I A Antigen,II Peptide, MHC,Ia Like Antigen,Ia Like Antigens,Immune Associated Antigens,Immune Response Associated Antigens,MHC II Molecules,Molecules, MHC-II,Peptide, MHC II,Peptides, MHC II
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell

Related Publications

B L Kotzin, and G S Kansas, and E G Engleman, and R T Hoppe, and H S Kaplan, and S Strober
January 1987, Arthritis and rheumatism,
B L Kotzin, and G S Kansas, and E G Engleman, and R T Hoppe, and H S Kaplan, and S Strober
November 1985, Arthritis and rheumatism,
B L Kotzin, and G S Kansas, and E G Engleman, and R T Hoppe, and H S Kaplan, and S Strober
January 1982, Lancet (London, England),
B L Kotzin, and G S Kansas, and E G Engleman, and R T Hoppe, and H S Kaplan, and S Strober
February 1987, The Journal of rheumatology,
B L Kotzin, and G S Kansas, and E G Engleman, and R T Hoppe, and H S Kaplan, and S Strober
December 1986, The British journal of radiology,
B L Kotzin, and G S Kansas, and E G Engleman, and R T Hoppe, and H S Kaplan, and S Strober
September 1997, Lancet (London, England),
B L Kotzin, and G S Kansas, and E G Engleman, and R T Hoppe, and H S Kaplan, and S Strober
February 1986, CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne,
B L Kotzin, and G S Kansas, and E G Engleman, and R T Hoppe, and H S Kaplan, and S Strober
January 1990, Duodecim; laaketieteellinen aikakauskirja,
B L Kotzin, and G S Kansas, and E G Engleman, and R T Hoppe, and H S Kaplan, and S Strober
January 1983, European journal of immunology,
B L Kotzin, and G S Kansas, and E G Engleman, and R T Hoppe, and H S Kaplan, and S Strober
April 1985, Annals of internal medicine,
Copied contents to your clipboard!