Fluorescein-conjugated Bandeiraea simplicifolia lectin as a marker of endodermal, yolk sac, and trophoblastic differentiation in the mouse embryo. 1983

T C Wu, and Y J Wan, and I Damjanov

The Bandeiraea simplicifolia lectin I (BSA-I) conjugated to fluorescein isothiocyanate was used as a histochemical reagent to study the mouse embryos from fertilization to early somitogenesis. No lectin binding could be detected on the embryonic cells in the preimplantation embryo. Lectin labeled intensely the zona pellucida. In the implanting embryos lectin binding was detected along the subtrophectodermal and Reichert's membrane, in the cytoplasm of the parietal and visceral endoderm, and the trophoblastic giant cells, but not in the ectodermal cells. Studies on explanted blastocyts cultured in vitro disclosed that the cytoplasmic BSA-I binding sites in trophoblastic cells develop gradually. In the 9-day somitic embryo BSA-I reacted with epithelial cells of the yolk sac, but not with the mesenchymal cells. A continuity between the lectin-reactive endoderm and the foregut epithelium could be demonstrated. These data indicated that BSA-I lectin can be used as a histochemical probe for endodermal (yolk sac) and trophoblastic differentiation in the peri-implantational mouse embryo.

UI MeSH Term Description Entries
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013861 Thiocyanates Organic derivatives of thiocyanic acid which contain the general formula R-SCN. Rhodanate,Rhodanates
D014327 Trophoblasts Cells lining the outside of the BLASTOCYST. After binding to the ENDOMETRIUM, trophoblasts develop into two distinct layers, an inner layer of mononuclear cytotrophoblasts and an outer layer of continuous multinuclear cytoplasm, the syncytiotrophoblasts, which form the early fetal-maternal interface (PLACENTA). Cytotrophoblasts,Syncytiotrophoblasts,Trophoblast,Cytotrophoblast,Syncytiotrophoblast
D015017 Yolk Sac The first of four extra-embryonic membranes to form during EMBRYOGENESIS. In REPTILES and BIRDS, it arises from endoderm and mesoderm to incorporate the EGG YOLK into the DIGESTIVE TRACT for nourishing the embryo. In placental MAMMALS, its nutritional function is vestigial; however, it is the source of INTESTINAL MUCOSA; BLOOD CELLS; and GERM CELLS. It is sometimes called the vitelline sac, which should not be confused with the VITELLINE MEMBRANE of the egg. Vitelline Sac of Embryo,Embryo Vitelline Sac,Embryo Vitelline Sacs,Sac, Yolk,Sacs, Yolk,Yolk Sacs

Related Publications

T C Wu, and Y J Wan, and I Damjanov
October 2004, International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists,
T C Wu, and Y J Wan, and I Damjanov
January 1979, Perspectives in pediatric pathology,
T C Wu, and Y J Wan, and I Damjanov
September 1975, The Journal of biological chemistry,
T C Wu, and Y J Wan, and I Damjanov
September 2005, The American journal of surgical pathology,
T C Wu, and Y J Wan, and I Damjanov
July 2016, International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists,
T C Wu, and Y J Wan, and I Damjanov
November 1983, Developmental biology,
T C Wu, and Y J Wan, and I Damjanov
January 1984, Teratogenesis, carcinogenesis, and mutagenesis,
Copied contents to your clipboard!