The optic nerve of the brush-tailed possum, Trichosurus vulpecula: fibre diameter spectrum and conduction latency groups. 1978

B Freeman, and C R Watson

The principal findings of this report on the morphology and electrophysiology of the possum optic nerve are: (i) There are about 230,000 fibres in the optic nerve. This fibre count, based on electron microscopy, is slightly less than a previously reported estimate of the total number of ganglion cells in the possum retina. (ii) The majority (greater than 98%) of the fibres of the optic nerve are myelinated axons of retinal ganglion cells. The diameters of these fibres range from 0.4--4.6 micrometer (axon diameter range: 0.3--3.8 micrometer) and the frequency distribution of the fibre diameters (and axon diameters) is positively skewed and unimodal. (iii) The antidromic compound action potential of the possum optic nerve shows four negative peaks following stimulation of the optic chiasm. These peaks are associated with four conduction latency groups of fibres which have been designated t1, t2, t3 and t4 in order of increasing conduction latency. (iv) The mean peak conduction velocities of the fibres in the conduction latency groups are 13.1 ms-1 (t1), 8.1 ms-1 (t2), 5.7 ms-1 (t3) and 3.1 ms-1 (t4). (v) There is no direct correlation between the frequency distribution of fibre (or axon) diameters as measured by electron microscopy of transverse sections of fixed optic nerve and the conduction latency groups. (vi) The reconstruction of the possum optic nerve compund action potential on the basis of either axon or fibre diameter frequency distribution does not provide an acceptable, indirect correlation between the morphology and the electrophysiology of this optic nerve.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009893 Opossums New World marsupials of the family Didelphidae. Opossums are omnivorous, largely nocturnal and arboreal MAMMALS, grow to about three feet in length, including the scaly prehensile tail, and have an abdominal pouch in which the young are carried at birth. Didelphidae,Opossum
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D005260 Female Females
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

B Freeman, and C R Watson
January 1976, Brain, behavior and evolution,
B Freeman, and C R Watson
July 1978, Journal of reproduction and fertility,
B Freeman, and C R Watson
September 1977, Annals of the New York Academy of Sciences,
B Freeman, and C R Watson
January 1982, Brain, behavior and evolution,
B Freeman, and C R Watson
January 1991, Anatomischer Anzeiger,
B Freeman, and C R Watson
July 1973, The Journal of endocrinology,
B Freeman, and C R Watson
February 1979, Australian journal of biological sciences,
B Freeman, and C R Watson
January 1983, Brain, behavior and evolution,
Copied contents to your clipboard!