Low prostacyclin synthetase activity of fetal rat aorta. Progressive increase after birth. 1983

H Deckmyn, and L Font, and C Van Hemelen, and L O Carreras, and G Defreyn, and J Vermylen

Aortae from fetal or 3 weeks old rats produced very small amounts of PGI2, prostacyclin. This production increased from 4 weeks on, reaching adult values at about ten weeks. This maturation seemed to be predominantly determined by a change in the PGI2 synthetase system, rather than in arachidonic acid availability, phospholipase or cyclo-oxygenase activity. The anti-oxidant ascorbic acid stimulated prostacyclin production more strongly in adult than in young rat aortae. This finding suggests that the lower production of PGI2 by young tissues is not due to an enhanced inhibition of prostacyclin synthetase by lipid peroxides.

UI MeSH Term Description Entries
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic

Related Publications

H Deckmyn, and L Font, and C Van Hemelen, and L O Carreras, and G Defreyn, and J Vermylen
February 1981, Prostaglandins and medicine,
H Deckmyn, and L Font, and C Van Hemelen, and L O Carreras, and G Defreyn, and J Vermylen
June 1980, Prostaglandins and medicine,
H Deckmyn, and L Font, and C Van Hemelen, and L O Carreras, and G Defreyn, and J Vermylen
January 1983, Haemostasis,
H Deckmyn, and L Font, and C Van Hemelen, and L O Carreras, and G Defreyn, and J Vermylen
March 1982, Pharmacological research communications,
H Deckmyn, and L Font, and C Van Hemelen, and L O Carreras, and G Defreyn, and J Vermylen
September 1975, Biochemical pharmacology,
H Deckmyn, and L Font, and C Van Hemelen, and L O Carreras, and G Defreyn, and J Vermylen
August 1984, Surgery,
H Deckmyn, and L Font, and C Van Hemelen, and L O Carreras, and G Defreyn, and J Vermylen
November 1986, Die Naturwissenschaften,
H Deckmyn, and L Font, and C Van Hemelen, and L O Carreras, and G Defreyn, and J Vermylen
January 1982, European journal of applied physiology and occupational physiology,
H Deckmyn, and L Font, and C Van Hemelen, and L O Carreras, and G Defreyn, and J Vermylen
January 1984, Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie,
H Deckmyn, and L Font, and C Van Hemelen, and L O Carreras, and G Defreyn, and J Vermylen
November 1980, Clinical science (London, England : 1979),
Copied contents to your clipboard!