Polymorphism of human thyroxine-binding globulin. 1983

S Grimaldi, and L Bartalena, and C Ramacciotti, and J Robbins

T4-binding globulin (TBG) consists of a single polypeptide chain containing 4 oligosaccharide units with an average of 10 terminal sialic acid residues. Isoelectric focusing (IEF) of TBG purified from pooled human plasma showed 4 main bands isoelectric at pH 4.2, 4.3, 4.5, and 4.6. Removal of 85% of carbohydrates by treatment with mixed glycosidases reduced these bands to 2, at pH 5.4 and 5.7. This residual microheterogeneity was not related to protein-ampholyte complexes, since it was still present in 8 M urea. It also did not represent an equilibrium mixture of interchangeable conformations, since each band obtained in the first dimension IEF gave a single spot when rerun in a second dimension. Therefore, the residual microheterogeneity of TBG after removal of carbohydrates can be attributed to variation in amino acid composition. Since genetic polymorphism of TBG was recently demonstrated, we further investigated whether the residual microheterogeneity was genetically determined. Plasma samples from 20 white donors and 17 black donors were labeled with [125I]T4 and submitted to IEF, followed by autoradiography. TBG-1, found in white donors and most black donors, showed the same 4 bands as TBG purified from pooled plasma. Two less frequent phenotypes were found in black individuals: TBG-2, with 4 bands at approximately pH 4.25, 4.45, 4.55, and 4.7; and TBG-1,2, having all of the bands present in TBG-1 and TBG-2. Electrophoretically homogeneous preparations of TBG of each type were obtained from 100 ml plasma; after deglycosylation, TBG-1 revealed 2 bands isoelectric at pH 5.4 and 5.7, TBG-2 had 2 bands at pH 5.7 and 5.9, and TBG-1,2 had 3 bands at pH 5.4, 5.7, and 5.9. The same TBG bands were found after neuraminidase treatment of whole plasma from the same donors. These data demonstrate two kinds of TBG polymorphism. The first is found in deglycosylated TBG from individual donors and is probably due to variation in amino acid composition. The second, also unrelated to the carbohydrate moiety, is a genetic polymorphism found in blacks.

UI MeSH Term Description Entries
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D007526 Isoelectric Point The pH in solutions of proteins and related compounds at which the dipolar ions are at a maximum. Isoelectric Points,Point, Isoelectric,Points, Isoelectric
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D006026 Glycoside Hydrolases Any member of the class of enzymes that catalyze the cleavage of the glycosidic linkage of glycosides and the addition of water to the resulting molecules. Endoglycosidase,Exoglycosidase,Glycohydrolase,Glycosidase,Glycosidases,Glycoside Hydrolase,Endoglycosidases,Exoglycosidases,Glycohydrolases,Hydrolase, Glycoside,Hydrolases, Glycoside
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013975 Thyroxine-Binding Proteins Blood proteins that bind to THYROID HORMONES such as THYROXINE and transport them throughout the circulatory system. Thyroxine Transport Protein,Thyroxine-Binding Protein,Thyroxine Binding Protein,Thyroxine Binding Proteins
D044383 Black People Persons having origins in any of the black racial groups of AFRICA. Note that OMB category BLACK OR AFRICAN AMERICAN is available for the United States population groups. Race and ethnicity terms, as used in the federal government, are self-identified social construct and may include terms outdated and offensive in MeSH to assist users who are interested in retrieving comprehensive search results for studies such as in longitudinal studies. African Continental Ancestry Group,Black Person,Negroid Race,Black Peoples,Black Persons,Negroid Races,People, Black,Person, Black,Persons, Black,Race, Negroid
D044465 White People Persons having origins in any of the white racial groups of Europe, the Middle East, or North Africa. Note that OMB category WHITE is available for the United States population groups. Race and ethnicity terms, as used in the federal government, are self-identified social construct and may include terms outdated and offensive in MeSH to assist users who are interested in retrieving comprehensive search results for studies such as in longitudinal studies. European Continental Ancestry Group,White Person,Caucasian Race,Caucasoid Race,Caucasian Races,Caucasoid Races,People, White,Person, White,Race, Caucasian,Race, Caucasoid,White Peoples,White Persons

Related Publications

S Grimaldi, and L Bartalena, and C Ramacciotti, and J Robbins
January 1981, Reviews of physiology, biochemistry and pharmacology,
S Grimaldi, and L Bartalena, and C Ramacciotti, and J Robbins
December 1972, The Journal of clinical investigation,
S Grimaldi, and L Bartalena, and C Ramacciotti, and J Robbins
January 1972, Humangenetik,
S Grimaldi, and L Bartalena, and C Ramacciotti, and J Robbins
September 1971, The Journal of physiology,
S Grimaldi, and L Bartalena, and C Ramacciotti, and J Robbins
March 1971, The Journal of clinical endocrinology and metabolism,
S Grimaldi, and L Bartalena, and C Ramacciotti, and J Robbins
December 1974, Biochimica et biophysica acta,
S Grimaldi, and L Bartalena, and C Ramacciotti, and J Robbins
March 1980, Archives of biochemistry and biophysics,
S Grimaldi, and L Bartalena, and C Ramacciotti, and J Robbins
June 1973, Archives of biochemistry and biophysics,
S Grimaldi, and L Bartalena, and C Ramacciotti, and J Robbins
August 1972, Biochimica et biophysica acta,
S Grimaldi, and L Bartalena, and C Ramacciotti, and J Robbins
June 1976, The Journal of biological chemistry,
Copied contents to your clipboard!