Renin release and lipid peroxidation by ascorbic acid in the renin granule fraction of rat kidney cortex. 1983

Y Matsumura, and T Shimizu, and Y Ohno, and N Miyawaki, and S Morimoto

This study was carried out to investigate the effect of lipid peroxidation in the renin granule fraction on renin release from the granules. Ascorbic acid was used to cause lipid peroxidation in the renin granule fraction prepared from rat kidney cortex homogenate. Renin activity was measured by radioimmunoassay and lipid peroxidation was estimated by means of the thiobarbituric acid test. Ascorbic acid, at the concentrations from 5 to 100 microM, produced a dose-dependent increase in lipid peroxidation during incubation of the renin granule fraction at 37 degrees C for 30 min, accompanied by increased release of renin from the granules. On the other hand, dehydroascorbic acid showed no effects on lipid peroxidation and renin release. The simultaneous increases in lipid peroxidation and renin release induced by ascorbic acid in the renin granule fraction were markedly suppressed by the addition of disodium ethylenediaminetetra-acetic acid and antioxidants such as N,N'-diphenyl-p-phenylenediamine and hydroquinone. These findings indicate that lipid peroxidation in the renin granule fraction results in the stimulation of renin release from the granules.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D003683 Dehydroascorbic Acid The reversibly oxidized form of ascorbic acid. It is the lactone of 2,3-DIKETOGULONIC ACID and has antiscorbutic activity in man on oral ingestion. Acid, Dehydroascorbic
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium

Related Publications

Y Matsumura, and T Shimizu, and Y Ohno, and N Miyawaki, and S Morimoto
January 1991, Life sciences,
Y Matsumura, and T Shimizu, and Y Ohno, and N Miyawaki, and S Morimoto
March 1979, Biochimica et biophysica acta,
Y Matsumura, and T Shimizu, and Y Ohno, and N Miyawaki, and S Morimoto
April 1988, Research communications in chemical pathology and pharmacology,
Y Matsumura, and T Shimizu, and Y Ohno, and N Miyawaki, and S Morimoto
June 1979, Indian journal of biochemistry & biophysics,
Y Matsumura, and T Shimizu, and Y Ohno, and N Miyawaki, and S Morimoto
April 1990, Archives of biochemistry and biophysics,
Y Matsumura, and T Shimizu, and Y Ohno, and N Miyawaki, and S Morimoto
May 1965, Archives of biochemistry and biophysics,
Y Matsumura, and T Shimizu, and Y Ohno, and N Miyawaki, and S Morimoto
October 1995, Research communications in molecular pathology and pharmacology,
Y Matsumura, and T Shimizu, and Y Ohno, and N Miyawaki, and S Morimoto
April 1982, Japanese journal of pharmacology,
Y Matsumura, and T Shimizu, and Y Ohno, and N Miyawaki, and S Morimoto
October 1970, The American journal of physiology,
Y Matsumura, and T Shimizu, and Y Ohno, and N Miyawaki, and S Morimoto
October 1970, The American journal of physiology,
Copied contents to your clipboard!