Metabolism of 2,2',3,3',6,6'-hexachlorobiphenyl and 2,2',4,4',5,5'-hexachlorobiphenyl by human hepatic microsomes. 1983

R G Schnellmann, and C W Putnam, and I G Sipes

Since the metabolism of polychlorinated biphenyls (PCBs) is the critical factor that determines whether or not they accumulate in adipose tissue, we have studied the metabolism of two hexachlorobiphenyls (HCBs), 2,2'3,3',6,6'-hexachlorobiphenyl (236-HCB) and 2,2'4,4',5,5'-hexachlorobiphenyl (245-HCB), by human hepatic microsomes. Human microsomes were isolated from patients undergoing liver resection and were found to have cytochrome P-450 levels (0.28 nmoles/mg microsomal protein) and cytochrome P-450-dependent enzymatic activities similar to those reported by other workers. 245-HCB was not metabolized by human microsomes under various conditions, while 236-HCB was metabolized with an apparent Km of 8.8 microM and a Vmax of 5.1 pmoles/mg microsomal protein/min. Two major metabolites were formed and identified by gas chromatography-mass spectrometry as 2,2',3,3',6,6'-hexachloro-4-biphenylol and 2,2',3,3'6,6'-hexachloro-5-biphenylol. [14C]236-HCB equivalents were found to covalently bind to microsomal protein. Addition of 1 or 5 mM reduced glutathione decreased the degree of covalent binding. These data suggest that HCBs are metabolized through an arene oxide. The fact that 245-HCB was not metabolized explains why it is the predominant PCB found in human adipose tissue.

UI MeSH Term Description Entries
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011078 Polychlorinated Biphenyls Industrial products consisting of a mixture of chlorinated biphenyl congeners and isomers. These compounds are highly lipophilic and tend to accumulate in fat stores of animals. Many of these compounds are considered toxic and potential environmental pollutants. PCBs,Polychlorinated Biphenyl,Polychlorobiphenyl Compounds,Biphenyl, Polychlorinated,Biphenyls, Polychlorinated,Compounds, Polychlorobiphenyl
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly

Related Publications

R G Schnellmann, and C W Putnam, and I G Sipes
January 2001, Acta crystallographica. Section C, Crystal structure communications,
R G Schnellmann, and C W Putnam, and I G Sipes
January 1997, Fundamental and applied toxicology : official journal of the Society of Toxicology,
R G Schnellmann, and C W Putnam, and I G Sipes
December 1980, Life sciences,
R G Schnellmann, and C W Putnam, and I G Sipes
March 2008, Experimental biology and medicine (Maywood, N.J.),
R G Schnellmann, and C W Putnam, and I G Sipes
January 2015, Environmental science & technology,
R G Schnellmann, and C W Putnam, and I G Sipes
October 2009, Acta crystallographica. Section E, Structure reports online,
R G Schnellmann, and C W Putnam, and I G Sipes
July 2006, Acta crystallographica. Section C, Crystal structure communications,
R G Schnellmann, and C W Putnam, and I G Sipes
May 2009, Acta crystallographica. Section E, Structure reports online,
R G Schnellmann, and C W Putnam, and I G Sipes
January 1999, Acta crystallographica. Section C, Crystal structure communications,
Copied contents to your clipboard!