A beta-galactosidase isoenzyme from Turbo cornutus with substrate specificity toward GM1-ganglioside and glycoproteins. 1983

K K Yeung, and A J Owen, and J A Dain

beta-Galactosidase from T. cornutus was resolved into two activity peaks by gel filtration column chromatography. The pH optima of the two peaks designated P1 and P2, were 5.5 and 3.0, respectively, when p-nitrophenyl-beta-D-galactopyranoside was used as the substrate. The molecular weights of P1 and P2 were 700,000 +/- 70,000 and 78,000 +/- 7800, respectively, when estimated by gel filtration chromatography. The activities of both forms of the enzymes are stimulated by anions such as Cl-, Br- and NO-3. While the activity of P1 was stimulated by low anion concentrations, P2 requires 700 times higher anion concentration for similar enhancement of activity. P1, the high molecular weight form hydrolyzes mainly galactose from small molecular weight beta-galactosides, such as p-nitrophenyl-beta-D-galactopyranoside, 4-methylumbelliferyl-beta-D-galactopyranoside, lactose, lactosylceramide and 3-O-beta-D-galactopyranosyl-D-arabinose, whereas P2, the low molecular weight form cleaves, in addition, all the beta-galactosides tested, including 2-hexadecanoylamino-4-nitrophenyl-beta-D-galactopyranoside, GM1-ganglioside, asialo-GM1-ganglioside, asialo fetuin, alpha 1-acid glycoproteins and the tryptic peptides of the glycoproteins. The optimal conditions for the hydrolysis of the terminal galactose from GM1-ganglioside which does not occur in gastropods, such as T. cornutus, was found to require 40 mM NaCl and 1 mM sodium taurodeoxycholate at pH 3.0 in 50 mM sodium citrate buffer, conditions similar to those by mammalian beta-galactosidase.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D008974 Mollusca A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora. Molluscs,Mollusks,Mollusc,Molluscas,Mollusk
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D005696 Galactosidases A family of galactoside hydrolases that hydrolyze compounds with an O-galactosyl linkage. EC 3.2.1.-. Galactosidase
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

K K Yeung, and A J Owen, and J A Dain
April 1988, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
K K Yeung, and A J Owen, and J A Dain
September 1976, Canadian journal of biochemistry,
K K Yeung, and A J Owen, and J A Dain
July 1986, Journal of biochemistry,
K K Yeung, and A J Owen, and J A Dain
November 1977, Clinica chimica acta; international journal of clinical chemistry,
K K Yeung, and A J Owen, and J A Dain
November 1973, Archives of biochemistry and biophysics,
K K Yeung, and A J Owen, and J A Dain
May 1986, Human genetics,
K K Yeung, and A J Owen, and J A Dain
December 1974, The Journal of biological chemistry,
K K Yeung, and A J Owen, and J A Dain
July 1984, Clinica chimica acta; international journal of clinical chemistry,
K K Yeung, and A J Owen, and J A Dain
September 1968, Clinica chimica acta; international journal of clinical chemistry,
K K Yeung, and A J Owen, and J A Dain
October 1973, The Biochemical journal,
Copied contents to your clipboard!