Strain distribution in extents of lysozyme resistance and O-acetylation of gonococcal peptidoglycan determined by high-performance liquid chromatography. 1983

S C Swim, and M A Gfell, and C E Wilde, and R S Rosenthal

The extent of lysozyme resistance and O-acetylation of purified peptidoglycan (PG) from 20 strains of Neisseria gonorrhoeae was examined to determine how widespread these properties are among various subsets of gonococcal isolates. To determine digestibility by lysozyme, we treated [3H]- or [14C]glucosamine-labeled PG with hen egg white lysozyme (HEW-LZ) and determined the size distribution of HEW-LZ soluble PG at the completion of the reaction by molecular-sieve high-performance liquid chromatography, using a Varian TSK SW2000 column, a method that proved considerably more efficient than traditional chromatography for fractionating low-molecular-weight PG fragments solely on the basis of size. The extent of HEW-LZ resistance was expressed as the percentage of PG that was larger in size than disaccharide peptide tetramers (including insoluble PG removed by centrifugation). The percent O-acetylation was determined by converting insoluble PG totally to uncross-linked monomers by the combined action of Chalaropsis B muramidase followed by Escherichia coli endopeptidase and then quantitating radioactivity in O-acetylated and non-O-acetylated monomers after paper chromatography. The PG of the vast majority (19 of 20) of gonococcal strains examined was extensively HEW-LZ resistant (range, 40 to 60% larger than tetramers) and extensively O-acetylated (range, 34 to 52%). Only the PG of strain RD5 (highest rate of PG turnover among gonococci so far examined and the prototype of gonococci having O-acetyl-deficient PG) had greatly reduced O-acetylation (15%) and exhibited virtually no HEW-LZ resistance (2% larger than tetramers). Extensive HEW-LZ resistance and O-acetylation were apparently not associated specifically with (i) a given type of colonial variant (piliated versus nonpiliated or opaque versus transparent), (ii) a given type of clinical isolate (local versus disseminated), (iii) the extent of laboratory passage, or (iv) (with the possible exception of penicillin-resistant strain FA102) the presence of one or more genetic loci governing antibiotic resistance among members of an isogenic set of gonococci. From this survey, we conclude that lysozyme resistance and extensive O-acetylation of PG are widespread among gonococci and, thus, that most strains are potential sources of hydrolase-resistant PG that conceivably could persist as macromolecular fragments in vivo.

UI MeSH Term Description Entries
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D009344 Neisseria gonorrhoeae A species of gram-negative, aerobic bacteria primarily found in purulent venereal discharges. It is the causative agent of GONORRHEA. Diplococcus gonorrhoeae,Gonococcus,Gonococcus neisseri,Merismopedia gonorrhoeae,Micrococcus der gonorrhoe,Micrococcus gonococcus,Micrococcus gonorrhoeae
D010457 Peptidoglycan A structural polymer of the bacterial cell envelope consisting of sugars and amino acids which is responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. Murein,Pseudomurein
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004529 Egg White The white of an egg, especially a chicken's egg, used in cooking. It contains albumin. (Random House Unabridged Dictionary, 2d ed) Egg Whites
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

S C Swim, and M A Gfell, and C E Wilde, and R S Rosenthal
August 1982, Infection and immunity,
S C Swim, and M A Gfell, and C E Wilde, and R S Rosenthal
February 1983, Clinical chemistry,
S C Swim, and M A Gfell, and C E Wilde, and R S Rosenthal
June 1983, Infection and immunity,
S C Swim, and M A Gfell, and C E Wilde, and R S Rosenthal
June 1984, Journal of chromatography,
S C Swim, and M A Gfell, and C E Wilde, and R S Rosenthal
October 1991, Forensic science international,
S C Swim, and M A Gfell, and C E Wilde, and R S Rosenthal
October 1989, Journal of chromatography,
S C Swim, and M A Gfell, and C E Wilde, and R S Rosenthal
December 1983, Journal of pharmaceutical sciences,
S C Swim, and M A Gfell, and C E Wilde, and R S Rosenthal
April 1984, Journal of pharmaceutical sciences,
S C Swim, and M A Gfell, and C E Wilde, and R S Rosenthal
January 2018, Frontiers in microbiology,
S C Swim, and M A Gfell, and C E Wilde, and R S Rosenthal
October 1983, Chemical & pharmaceutical bulletin,
Copied contents to your clipboard!