Electron microprobe analysis of frog skin epithelium: evidence for a syncytial sodium transport compartment. 1978

R Rick, and A Dörge, and E von Arnim, and K Thurau

For elucidation of the functional organization of frog skin epithelium with regard to transepithelial Na transport, electrolyte concentrations in individual epithelial cells were determined by electron microprobe analysis. The measurements were performed on 1-micron thick freeze-dried cryosections by an energy-dispersive X-ray detecting system. Quantification of the electrolyte concentrations was achieved by comparing the X-ray intensities obtained in the cells with those of an internal albumin standard. The granular, spiny, and germinal cells, which constitute the various layers of the epithelium, showed an identical behavior of their Na and K concentrations under all experimental conditions. In the control, both sides of the skin bathed in frog Ringer's solution, the mean cellular concentrations (in mmole/kg wet wt) were 9 for Na and 118 for K. Almost no change in the cellular Na occurred when the inside bathing solution was replaced by a Na-free isotonic Ringer's solution, whereas replacing the outside solution by distilled water resulted in a decrease of Na to almost zero in all layers. Inhibition of the transepithelial Na transport by ouabain (10(-4) M) produced in increase in Na to 109 and a decrease in K to 16. The effect of ouabain on the cellular Na and K concentrations was completely cancelled when the Na influx from the outside was prevented, either by removing Na or adding amiloride (10(-4) M). When, after the action of ouabain, Na was removed from the outside bathing solution, the Na and K concentration in all layers returned to control values. The latter effect could be abolished by amiloride. The other cell types of the epithelium showed under some experimental conditions a different behavior. In the cornified cells and the light cells, which occurred occasionally in the stratum granulosum, the electrolyte concentrations approximated those of the outer bathing medium under all experimental conditions. In the mitochondria-rich cells, the Na influx after ouabain could not be prevented by adding amiloride. In the gland cells, only a small change in the Na and K concentrations could be detected after ouabain. The results of the present study are consistent with a two-barrier concept of transepithelial Na transport. The Na transport compartment comprises all living epithelial layers. Therefore, with the exception of some epithelial cell types, the from skin epithelium can be regarded as a functional syncytium for Na.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004577 Electron Probe Microanalysis Identification and measurement of ELEMENTS and their location based on the fact that X-RAYS emitted by an element excited by an electron beam have a wavelength characteristic of that element and an intensity related to its concentration. It is performed with an electron microscope fitted with an x-ray spectrometer, in scanning or transmission mode. Microscopy, Electron, X-Ray Microanalysis,Spectrometry, X-Ray Emission, Electron Microscopic,Spectrometry, X-Ray Emission, Electron Probe,X-Ray Emission Spectrometry, Electron Microscopic,X-Ray Emission Spectrometry, Electron Probe,X-Ray Microanalysis, Electron Microscopic,X-Ray Microanalysis, Electron Probe,Microanalysis, Electron Probe,Spectrometry, X Ray Emission, Electron Microscopic,Spectrometry, X Ray Emission, Electron Probe,X Ray Emission Spectrometry, Electron Microscopic,X Ray Emission Spectrometry, Electron Probe,X-Ray Microanalysis,Electron Probe Microanalyses,Microanalyses, Electron Probe,Microanalysis, X-Ray,Probe Microanalyses, Electron,Probe Microanalysis, Electron,X Ray Microanalysis,X Ray Microanalysis, Electron Microscopic,X Ray Microanalysis, Electron Probe
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005088 Exocrine Glands Glands of external secretion that release its secretions to the body's cavities, organs, or surface, through a duct. Exocrine Gland,Gland, Exocrine,Glands, Exocrine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

R Rick, and A Dörge, and E von Arnim, and K Thurau
January 1974, Naunyn-Schmiedeberg's archives of pharmacology,
R Rick, and A Dörge, and E von Arnim, and K Thurau
March 1974, The Journal of physiology,
R Rick, and A Dörge, and E von Arnim, and K Thurau
January 1976, Folia morphologica,
R Rick, and A Dörge, and E von Arnim, and K Thurau
January 1974, Boletin de estudios medicos y biologicos,
R Rick, and A Dörge, and E von Arnim, and K Thurau
May 1988, Biochimica et biophysica acta,
R Rick, and A Dörge, and E von Arnim, and K Thurau
January 1971, The Journal of physiology,
R Rick, and A Dörge, and E von Arnim, and K Thurau
January 1989, Comparative biochemistry and physiology. A, Comparative physiology,
R Rick, and A Dörge, and E von Arnim, and K Thurau
August 1991, European journal of pharmacology,
R Rick, and A Dörge, and E von Arnim, and K Thurau
January 1999, Pflugers Archiv : European journal of physiology,
R Rick, and A Dörge, and E von Arnim, and K Thurau
March 1968, The Journal of cell biology,
Copied contents to your clipboard!