Antibody-dependent cytolysis (ADCC) of tumor cells by activated murine macrophages is a two-step process: quantification of target binding and subsequent target lysis. 1984

W J Johnson, and D P Bolognesi, and D O Adams

To analyze the antibody-dependent cell-mediated cytotoxicity (ADCC) reaction between tumor cells and activated murine macrophages in detail, it must be first determined if physical binding occurred between the two cell types. Over 15-20 min in vitro, antibody-coated HSB neoplastic targets became so firmly attached to the activated macrophages that they resisted removal with 4 vigorous washes. When a quantitative assay of binding was employed, attachment of tumor cells to activated macrophages was found to depend on the concentration of antibody and on the density of the macrophages. These two variables also determined the subsequent extent of cytolysis. Binding of antibody-coated targets by macrophages elicited with thioglycollate broth or activated by bacillus Calmette-Guerin (BCG) was comparable. Lysis by the activated macrophages, however, was far greater. Binding occurred at 4, 22, or 37 degrees C, while the subsequent lytic reaction occurred only at 37 degrees C. Thioglycollate broth effectively inhibited lysis but had no effect on binding. A porous filter placed between activated macrophages and targets resulted in abrogation of binding and lysis, even when antibody-coated targets were placed beneath the filters. When labeled, uncoated targets were added to cultures of macrophages in the presence of unlabeled antibody-coated targets, no lysis of the bystander (i.e., uncoated) targets was seen. The data suggest that ADCC is a multistep reaction, that vigorous physical binding of antibody-coated targets by activated macrophages is an initial and necessary step in ADCC, that such binding is not sufficient for ADCC, that such binding controls the selectivity of lysis in ADCC, and that the second step in ADCC results in target lysis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008223 Lymphoma A general term for various neoplastic diseases of the lymphoid tissue. Germinoblastoma,Lymphoma, Malignant,Reticulolymphosarcoma,Sarcoma, Germinoblastic,Germinoblastic Sarcoma,Germinoblastic Sarcomas,Germinoblastomas,Lymphomas,Lymphomas, Malignant,Malignant Lymphoma,Malignant Lymphomas,Reticulolymphosarcomas,Sarcomas, Germinoblastic
D008262 Macrophage Activation The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants. Activation, Macrophage,Activations, Macrophage,Macrophage Activations
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009163 Mycobacterium bovis The bovine variety of the tubercle bacillus. It is called also Mycobacterium tuberculosis var. bovis. BCG,Calmette-Guerin Bacillus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000920 Antibody-Dependent Cell Cytotoxicity The phenomenon of antibody-mediated target cell destruction by non-sensitized effector cells. The identity of the target cell varies, but it must possess surface IMMUNOGLOBULIN G whose Fc portion is intact. The effector cell is a "killer" cell possessing Fc receptors. It may be a lymphocyte lacking conventional B- or T-cell markers, or a monocyte, macrophage, or polynuclear leukocyte, depending on the identity of the target cell. The reaction is complement-independent. ADCC,Cytotoxicity, Antibody-Dependent Cell,Cell Cytoxicity, Antibody-Dependent,Antibody Dependent Cell Cytotoxicity,Antibody-Dependent Cell Cytotoxicities,Antibody-Dependent Cell Cytoxicities,Antibody-Dependent Cell Cytoxicity,Cell Cytotoxicities, Antibody-Dependent,Cell Cytotoxicity, Antibody-Dependent,Cell Cytoxicities, Antibody-Dependent,Cell Cytoxicity, Antibody Dependent,Cytotoxicities, Antibody-Dependent Cell,Cytotoxicity, Antibody Dependent Cell,Cytoxicities, Antibody-Dependent Cell,Cytoxicity, Antibody-Dependent Cell
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune

Related Publications

W J Johnson, and D P Bolognesi, and D O Adams
January 1986, Methods in enzymology,
W J Johnson, and D P Bolognesi, and D O Adams
July 1980, The Journal of experimental medicine,
W J Johnson, and D P Bolognesi, and D O Adams
July 1980, The Journal of experimental medicine,
W J Johnson, and D P Bolognesi, and D O Adams
August 1980, Journal of immunology (Baltimore, Md. : 1950),
W J Johnson, and D P Bolognesi, and D O Adams
February 1980, Cellular immunology,
W J Johnson, and D P Bolognesi, and D O Adams
January 1977, Progress in allergy,
W J Johnson, and D P Bolognesi, and D O Adams
January 1986, International journal of cancer,
W J Johnson, and D P Bolognesi, and D O Adams
June 1981, Journal of immunology (Baltimore, Md. : 1950),
W J Johnson, and D P Bolognesi, and D O Adams
September 1992, The Journal of clinical investigation,
Copied contents to your clipboard!