Stereoselectivity of the arene epoxide pathway of mephenytoin hydroxylation in man. 1984

A Küpfer, and J Lawson, and R A Branch

Stereoselective metabolism of mephenytoin has been investigated in four normal subjects by comparing urinary recoveries of hydroxylated metabolites after administration of racemic RS-mephenytoin (1.4 mmol/day) and R-mephenytoin (0.7 mmol/day) on separate occasions. Gas chromatography-mass spectrometry was employed to measure the urinary recovery of 3-methyl-5-(4-hydroxyphenyl)-5-ethylhydantoin (4-OH-M) and mephenytoin catechol, methylcatechol, and dihydrodiol metabolites. Following a single oral dose of racemic mephenytoin, 4-OH-M, mephenytoin catechol, and methylcatechol metabolites were identified in urine mainly as conjugates, whereas the dihydrodiol metabolite was recovered mainly in its unconjugated form. Urinary elimination of each metabolite was similar on days 1 and 10 of chronic racemic mephenytoin administration. Following R-mephenytoin administration, urinary recoveries of hydroxylated metabolites were five to 10 times smaller than after administration of the racemic drug. This implies substrate-stereoselective hydroxylation of the S-enantiomer of mephenytoin. In one subject with a genetic deficiency of aromatic mephenytoin hydroxylation deficiency, the excretion of each hydroxylated mephenytoin metabolite after RS-mephenytoin administration was decreased to 5-15% of the values found in the four extensively hydroxylating study volunteers. The impaired formation of hydroxylated mephenytoin metabolites in genetic hydroxylation deficiency, in conjunction with stereoselective hydroxylation of S-mephenytoin via an extensive NIH shift in normal man, is consistent with the hypothesis that the formation of the S-mephenytoin arene oxide is under genetic control and represents the initial enzymatic reaction of stereoselective aromatic mephenytoin hydroxylation. The formation of this potentially reactive metabolite of S-mephenytoin may have implications in mephenytoin-induced toxicity.

UI MeSH Term Description Entries
D008297 Male Males
D008617 Mephenytoin An anticonvulsant effective in tonic-clonic epilepsy (EPILEPSY, TONIC-CLONIC). It may cause blood dyscrasias. Methoin,Methyl Phenetoin,5-Ethyl-3-Methyl-5-Phenylhydantoin,Mefenetoin,Mesantoin,Phenantoin,5 Ethyl 3 Methyl 5 Phenylhydantoin,Phenetoin, Methyl
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D004988 Ethers, Cyclic Compounds of the general formula R-O-R arranged in a ring or crown formation. Cyclic Ether,Cyclic Ethers,Ether, Cyclic
D005966 Glucuronidase Endo-beta-D-Glucuronidase,Endoglucuronidase,Exo-beta-D-Glucuronidase,beta-Glucuronidase,Endo beta D Glucuronidase,Exo beta D Glucuronidase,beta Glucuronidase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006827 Hydantoins Compounds based on imidazolidine dione. Some derivatives are ANTICONVULSANTS. Hydantoin,Imidazolidine-2,4-Diones,Imidazolidine 2,4 Diones
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D013429 Sulfatases A class of enzymes that catalyze the hydrolysis of sulfate ESTERS. Sulfatase

Related Publications

A Küpfer, and J Lawson, and R A Branch
January 1980, Drug metabolism and disposition: the biological fate of chemicals,
A Küpfer, and J Lawson, and R A Branch
January 1984, European journal of clinical pharmacology,
A Küpfer, and J Lawson, and R A Branch
June 1979, Epilepsia,
A Küpfer, and J Lawson, and R A Branch
October 1985, Clinical pharmacology and therapeutics,
A Küpfer, and J Lawson, and R A Branch
May 1986, Xenobiotica; the fate of foreign compounds in biological systems,
A Küpfer, and J Lawson, and R A Branch
January 1988, British journal of clinical pharmacology,
A Küpfer, and J Lawson, and R A Branch
May 1986, American journal of human genetics,
A Küpfer, and J Lawson, and R A Branch
January 1989, Pharmacology & therapeutics,
A Küpfer, and J Lawson, and R A Branch
January 1994, British journal of clinical pharmacology,
A Küpfer, and J Lawson, and R A Branch
January 1991, European journal of clinical pharmacology,
Copied contents to your clipboard!