Interaction of trifluoperazine with Tetrahymena calmodulin. A 19F NMR study. 1984

T Shimizu, and M Hatano, and Y Muto, and Y Nozawa

We have used 19F NMR to study interactions of trifluoperazine (TFP), a potent calmodulin (CaM) antagonist, with Tetrahymena calmodulin (Tet. CaM). Changes in chemical shift and bandwidth of TFP caused by adding Tet. CaM in the presence of excess Ca2+ were much smaller than those by adding porcine CaM. The spectral features of the TFP-Tet. CaM solution in the presence of excess Ca2+ were quite similar to those of the TFP-porcine CaM solution in the absence of Ca2+. The exchange rate of TFP from Tet. CaM was estimated to be nearly 20 s-1. The TFP-Tet. CaM solution in the absence of Ca2+ showed a pronounced pH dependence of the 19F NMR chemical shift, whereas the solution in the presence of excess Ca2+ showed a smaller pH dependence. Thus, it was suggested that TFP is located near a hydrophilic region of the Tet. CaM molecule in the absence of Ca2+, while TFP is located near a hydrophobic region of the Tet. CaM in the presence of excess Ca2+.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013769 Tetrahymena pyriformis A species of ciliate protozoa used extensively in genetic research. Tetrahymena pyriformi,pyriformi, Tetrahymena
D014268 Trifluoperazine A phenothiazine with actions similar to CHLORPROMAZINE. It is used as an antipsychotic and an antiemetic. Trifluoroperazine,Triftazin,Apo-Trifluoperazine,Eskazine,Flupazine,Stelazine,Terfluzine,Trifluoperazine HCL,Trifluoperazine Hydrochloride,Trifluperazine,Apo Trifluoperazine,ApoTrifluoperazine

Related Publications

T Shimizu, and M Hatano, and Y Muto, and Y Nozawa
August 1980, FEBS letters,
T Shimizu, and M Hatano, and Y Muto, and Y Nozawa
January 1981, FEBS letters,
T Shimizu, and M Hatano, and Y Muto, and Y Nozawa
April 1990, Journal of protein chemistry,
T Shimizu, and M Hatano, and Y Muto, and Y Nozawa
August 1984, Biochemical and biophysical research communications,
T Shimizu, and M Hatano, and Y Muto, and Y Nozawa
August 1983, European journal of biochemistry,
T Shimizu, and M Hatano, and Y Muto, and Y Nozawa
July 1985, Archives of biochemistry and biophysics,
T Shimizu, and M Hatano, and Y Muto, and Y Nozawa
September 1995, Journal of pharmaceutical and biomedical analysis,
T Shimizu, and M Hatano, and Y Muto, and Y Nozawa
January 2018, Journal of biomolecular NMR,
T Shimizu, and M Hatano, and Y Muto, and Y Nozawa
January 1983, Biochemical and biophysical research communications,
T Shimizu, and M Hatano, and Y Muto, and Y Nozawa
August 2011, Proteins,
Copied contents to your clipboard!