Temperature-induced changes in the hydroxy and non-hydroxy fatty acid-containing sphingolipids abundant in the surface membrane of Tetrahymena pyriformis NT-1. 1984

K Kaya, and C S Ramesha, and G A Thompson

Sphingolipids make up 30 to 40 mole % of the phospholipids found in the surface membrane of Tetrahymena pyriformis NT-1. We have identified the two major classes as non-hydroxy fatty acid-containing ceramide-2-aminoethylphosphonate (NCAEP) and alpha-hydroxy fatty acid-containing ceramide-2-aminoethylphosphonate (HCAEP). Both classes were well represented in cells grown at 39 degrees C. At this temperature their principal long chain bases were n-hexadeca-4-sphingenine and n-nonadeca-4-sphingenine. The major fatty acid of NCAEP from 39 degrees C-grown cells was palmitic acid and that of HCAEP was alpha-hydroxypalmitic acid. Cells grown at 15 degrees C contained NCAEP, but only traces of HCAEP. By analyzing the incorporation of [1-14C]palmitic acid into cells growing isothermally or shifted from 15 degrees C to 39 degrees C, we obtained evidence favoring a direct conversion of NCAEP to HCAEP. This conversion was blocked in cells grown at 15 degrees C, causing an accumulation of NCAEP. Tetrahymena is a useful model system for studying the poorly understood alpha-hydroxylation process that is of critical importance in myelination of animal nervous tissues.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010169 Palmitic Acids A group of 16-carbon fatty acids that contain no double bonds. Acids, Palmitic
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006880 Hydroxy Acids Organic compounds containing both the hydroxyl and carboxyl radicals. Hydroxy Acid,Acid, Hydroxy,Acids, Hydroxy
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013107 Sphingolipids A class of membrane lipids that have a polar head and two nonpolar tails. They are composed of one molecule of the long-chain amino alcohol sphingosine (4-sphingenine) or one of its derivatives, one molecule of a long-chain acid, a polar head alcohol and sometimes phosphoric acid in diester linkage at the polar head group. (Lehninger et al, Principles of Biochemistry, 2nd ed) Lysosphingolipids,Sphingolipid
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

K Kaya, and C S Ramesha, and G A Thompson
May 1972, Biochimica et biophysica acta,
K Kaya, and C S Ramesha, and G A Thompson
February 1982, Journal of biochemistry,
K Kaya, and C S Ramesha, and G A Thompson
January 1959, Comptes-rendus des travaux du Laboratoire Carlsberg,
K Kaya, and C S Ramesha, and G A Thompson
December 1979, Biochimica et biophysica acta,
K Kaya, and C S Ramesha, and G A Thompson
January 1985, Comparative biochemistry and physiology. A, Comparative physiology,
K Kaya, and C S Ramesha, and G A Thompson
February 1976, The Journal of protozoology,
K Kaya, and C S Ramesha, and G A Thompson
May 1972, Biochimica et biophysica acta,
Copied contents to your clipboard!