Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+. 1984

J G McCormack, and R M Denton

Increases in the amount of active, non-phosphorylated, pyruvate dehydrogenase which result from the perfusion of rat hearts with adrenaline were still evident during the preparation of mitochondria in sucrose-based media containing EGTA (at 0 degrees C) and their subsequent incubation at 30 degrees C in Na+-free KCl-based media containing respiratory substrates and EGTA. The differences from control values gradually diminished with time of incubation, but were still present after 8 min. Similar increases resulting from an increase in the concentration of Ca2+ in the perfusing medium also persisted. However, similar increases caused by 5 mM-pyruvate were only maintained during the preparation of mitochondria, not their incubation. Parallel increases, within incubated mitochondria, were found in the activity of the 2-oxoglutarate dehydrogenase complex assayed at a non-saturating concentration of 2-oxoglutarate. The enhancement of the activities of both of these Ca2+-sensitive enzymes within incubated mitochondria as a result of perfusion with adrenaline or a raised concentration of Ca2+ in the medium could be abolished within 1 min by the presence of 10 mM-NaCl. This effect of Na+ was blocked by 300 microM-diltiazem, which has been shown to inhibit Na+-induced egress of Ca2+ from rabbit heart mitochondria [VĂ¡ghy, Johnson, Matlib, Wang & Schwartz (1982) J. Biol. Chem. 257, 6000-6002]. The enhancements could also be abolished by increasing the extramitochondrial concentration of Ca2+ to a value where it caused maximal activation of the enzymes within control mitochondria. The results are consistent with the hypothesis that adrenaline activates rat heart pyruvate dehydrogenase by increasing the intramitochondrial concentration of Ca2+ and that this increase persists through to incubated mitochondria. Support for this conclusion was obtained by the yielding of a similar set of results from parallel experiments performed on control mitochondria that had firstly been preincubated (under conditions of steady-state Ca2+ cycling across the inner membrane) with sufficient proportions of Ca-EGTA buffers to achieve a similar degree of Ca2+-activation of pyruvate dehydrogenase (as caused by adrenaline) and had then undergone the isolation procedure again.

UI MeSH Term Description Entries
D007655 Ketoglutarate Dehydrogenase Complex 2-Keto-4-Hydroxyglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase Complex,Oxoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase Complex,2 Keto 4 Hydroxyglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase Complex,Complex, 2-Oxoglutarate Dehydrogenase,Complex, Ketoglutarate Dehydrogenase,Complex, alpha-Ketoglutarate Dehydrogenase,Dehydrogenase Complex, 2-Oxoglutarate,Dehydrogenase Complex, Ketoglutarate,Dehydrogenase Complex, alpha-Ketoglutarate,Dehydrogenase, 2-Keto-4-Hydroxyglutarate,Dehydrogenase, 2-Oxoglutarate,Dehydrogenase, Oxoglutarate,Dehydrogenase, alpha-Ketoglutarate,alpha Ketoglutarate Dehydrogenase,alpha Ketoglutarate Dehydrogenase Complex
D007658 Ketone Oxidoreductases Oxidoreductases that are specific for KETONES. Oxidoreductases, Ketone
D008297 Male Males
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004110 Diltiazem A benzothiazepine derivative with vasodilating action due to its antagonism of the actions of CALCIUM ion on membrane functions. Aldizem,CRD-401,Cardil,Cardizem,Dilacor,Dilacor XR,Dilren,Diltiazem Hydrochloride,Diltiazem Malate,Dilzem,Tiazac,CRD 401,CRD401
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA

Related Publications

J G McCormack, and R M Denton
December 1975, Archives of biochemistry and biophysics,
J G McCormack, and R M Denton
January 1990, Acta biochimica Polonica,
J G McCormack, and R M Denton
December 1989, Biochimica et biophysica acta,
J G McCormack, and R M Denton
April 1978, Archives of biochemistry and biophysics,
J G McCormack, and R M Denton
March 1976, The Journal of biological chemistry,
Copied contents to your clipboard!