Cardiorespiratory dynamics during sinusoidal and impulse exercise in man. 1983

Y Miyamoto, and Y Nakazono, and T Hiura, and Y Abe

Dynamic characteristics of ventilation, cardiac output, and gas exchange during sinusoidally varying work rates for the periods from 1 to 12 min and impulse work rate with a duration of 10 sec were studied on five healthy men in an upright position. Changes in work rate were given by controlling externally the electromagnetic braking system of a bicycle ergometer. Stroke volume, heart rate, and cardiac output during exercise were determined continuously by using an automated impedance cardiograph. Breath by breath determination in minute ventilation, respiratory frequency, tidal volume, oxygen consumption, carbon dioxide output, end-tidal pressures of oxygen and carbon dioxide, and gas exchange ratio were conducted. From these and steady-state response data amplitude and phase relations between each variable and the input work loads were obtained utilizing the frequency analysis techniques. The response characteristics to sinusoidal stimuli were well represented by first-order models with time constants for VE, VCO2, VO2, and Q averaging 75, 67, 52, and 36 sec, respectively. The kinetics of HR closely resembled that of Q. There was a close link between both the dynamics of VE and VCO2. On the other hand, the responses to impulse stimuli were better described by second-order models in which fast and slow response components were connected in parallel. However, the contribution of the fast component to total response was small. Although this response may support in its form the neuro-humoral concept to explain exercise hyperpnea, a tight linkage was observed between VE and VCO2 responses to impulse stimuli. Thus, hyperpnea during the unsteady-state of exercise may be explained by the cardiodynamic hypothesis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D012129 Respiratory Function Tests Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc. Lung Function Tests,Pulmonary Function Tests,Function Test, Pulmonary,Function Tests, Pulmonary,Pulmonary Function Test,Test, Pulmonary Function,Tests, Pulmonary Function,Function Test, Lung,Function Test, Respiratory,Function Tests, Lung,Function Tests, Respiratory,Lung Function Test,Respiratory Function Test,Test, Lung Function,Test, Respiratory Function,Tests, Lung Function,Tests, Respiratory Function
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D005080 Exercise Test Controlled physical activity which is performed in order to allow assessment of physiological functions, particularly cardiovascular and pulmonary, but also aerobic capacity. Maximal (most intense) exercise is usually required but submaximal exercise is also used. Arm Ergometry Test,Bicycle Ergometry Test,Cardiopulmonary Exercise Testing,Exercise Testing,Step Test,Stress Test,Treadmill Test,Cardiopulmonary Exercise Test,EuroFit Tests,Eurofit Test Battery,European Fitness Testing Battery,Fitness Testing,Physical Fitness Testing,Arm Ergometry Tests,Bicycle Ergometry Tests,Cardiopulmonary Exercise Tests,Ergometry Test, Arm,Ergometry Test, Bicycle,Ergometry Tests, Arm,Ergometry Tests, Bicycle,EuroFit Test,Eurofit Test Batteries,Exercise Test, Cardiopulmonary,Exercise Testing, Cardiopulmonary,Exercise Tests,Exercise Tests, Cardiopulmonary,Fitness Testing, Physical,Fitness Testings,Step Tests,Stress Tests,Test Battery, Eurofit,Test, Arm Ergometry,Test, Bicycle Ergometry,Test, Cardiopulmonary Exercise,Test, EuroFit,Test, Exercise,Test, Step,Test, Stress,Test, Treadmill,Testing, Cardiopulmonary Exercise,Testing, Exercise,Testing, Fitness,Testing, Physical Fitness,Tests, Arm Ergometry,Tests, Bicycle Ergometry,Tests, Cardiopulmonary Exercise,Tests, EuroFit,Tests, Exercise,Tests, Step,Tests, Stress,Tests, Treadmill,Treadmill Tests
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Y Miyamoto, and Y Nakazono, and T Hiura, and Y Abe
February 1980, Journal of applied physiology: respiratory, environmental and exercise physiology,
Y Miyamoto, and Y Nakazono, and T Hiura, and Y Abe
January 1992, European journal of applied physiology and occupational physiology,
Y Miyamoto, and Y Nakazono, and T Hiura, and Y Abe
September 1973, Circulation research,
Y Miyamoto, and Y Nakazono, and T Hiura, and Y Abe
October 2017, Physiological reports,
Y Miyamoto, and Y Nakazono, and T Hiura, and Y Abe
June 1995, The Journal of physiology,
Y Miyamoto, and Y Nakazono, and T Hiura, and Y Abe
January 1992, Experimental physiology,
Y Miyamoto, and Y Nakazono, and T Hiura, and Y Abe
January 1988, Kokyu to junkan. Respiration & circulation,
Y Miyamoto, and Y Nakazono, and T Hiura, and Y Abe
January 1991, The Japanese journal of physiology,
Y Miyamoto, and Y Nakazono, and T Hiura, and Y Abe
September 1976, The Journal of physiology,
Y Miyamoto, and Y Nakazono, and T Hiura, and Y Abe
November 1961, Journal of applied physiology,
Copied contents to your clipboard!