Lung edema due to hydrogen peroxide is independent of cyclooxygenase products. 1984

O Burghuber, and M M Mathias, and I F McMurtry, and J T Reeves, and N F Voelkel

Active oxygen species can cause lung injury. Although a direct action on endothelial cells is proposed, the possibility exists that they might cause injury via mediators. We considered that active oxygen species would stimulate the generation of cyclooxygenase metabolites, which then alter pulmonary vasoreactivity and cause edema. We chemically produced hydrogen peroxide by adding glucose oxidase to a plasma- and cell-free, but beta-D-glucose-containing, solution, which perfused isolated rat lungs. Addition of glucose oxidase to the perfusate caused a marked decrease in pulmonary vasoreactivity, accompanied by an increase in the concentrations of prostacyclin, thromboxane A2, and prostaglandin F2 alpha. Pretreatment with catalase, a specific scavenger of hydrogen peroxide, preserved pulmonary vasoreactivity, inhibited the increase of the concentration of the measured prostaglandins, and prevented edema formation. Indomethacin effectively blocked lung prostaglandin production but neither prevented the decrease in vasoreactivity nor inhibited edema formation. From these data we conclude that hydrogen peroxide impaired pulmonary vasoreactivity and subsequently caused edema. Despite the fact that hydrogen peroxide stimulated lung prostaglandin production, cyclooxygenase-derived products neither caused the decrease in vasoreactivity nor the development of edema.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D011460 Prostaglandins F (9 alpha,11 alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid (PGF(1 alpha)); (5Z,9 alpha,11,alpha,13E,15S)-9,11,15-trihydroxyprosta-5,13-dien-1-oic acid (PGF(2 alpha)); (5Z,9 alpha,11 alpha,13E,15S,17Z)-9,11,15-trihydroxyprosta-5,13,17-trien-1-oic acid (PGF(3 alpha)). A family of prostaglandins that includes three of the six naturally occurring prostaglandins. All naturally occurring PGF have an alpha configuration at the 9-carbon position. They stimulate uterine and bronchial smooth muscle and are often used as oxytocics. PGF
D011654 Pulmonary Edema Excessive accumulation of extravascular fluid in the lung, an indication of a serious underlying disease or disorder. Pulmonary edema prevents efficient PULMONARY GAS EXCHANGE in the PULMONARY ALVEOLI, and can be life-threatening. Wet Lung,Edema, Pulmonary,Edemas, Pulmonary,Pulmonary Edemas,Lung, Wet,Lungs, Wet,Wet Lungs
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005949 Glucose Oxidase An enzyme of the oxidoreductase class that catalyzes the conversion of beta-D-glucose and oxygen to D-glucono-1,5-lactone and peroxide. It is a flavoprotein, highly specific for beta-D-glucose. The enzyme is produced by Penicillium notatum and other fungi and has antibacterial activity in the presence of glucose and oxygen. It is used to estimate glucose concentration in blood or urine samples through the formation of colored dyes by the hydrogen peroxide produced in the reaction. (From Enzyme Nomenclature, 1992) EC 1.1.3.4. Microcid,Oxidase, Glucose
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

O Burghuber, and M M Mathias, and I F McMurtry, and J T Reeves, and N F Voelkel
May 1993, Journal of applied physiology (Bethesda, Md. : 1985),
O Burghuber, and M M Mathias, and I F McMurtry, and J T Reeves, and N F Voelkel
July 1965, Folia medica. Folia medica (Naples, Italy),
O Burghuber, and M M Mathias, and I F McMurtry, and J T Reeves, and N F Voelkel
August 1989, Journal of applied physiology (Bethesda, Md. : 1985),
O Burghuber, and M M Mathias, and I F McMurtry, and J T Reeves, and N F Voelkel
December 1985, Anaesthesia,
O Burghuber, and M M Mathias, and I F McMurtry, and J T Reeves, and N F Voelkel
October 2007, Journal of the European Academy of Dermatology and Venereology : JEADV,
O Burghuber, and M M Mathias, and I F McMurtry, and J T Reeves, and N F Voelkel
September 2001, Microvascular research,
O Burghuber, and M M Mathias, and I F McMurtry, and J T Reeves, and N F Voelkel
January 2013, Gastroenterologia y hepatologia,
O Burghuber, and M M Mathias, and I F McMurtry, and J T Reeves, and N F Voelkel
December 2003, American journal of physiology. Heart and circulatory physiology,
O Burghuber, and M M Mathias, and I F McMurtry, and J T Reeves, and N F Voelkel
September 2005, American journal of physiology. Heart and circulatory physiology,
O Burghuber, and M M Mathias, and I F McMurtry, and J T Reeves, and N F Voelkel
March 2003, Journal of agricultural and food chemistry,
Copied contents to your clipboard!