Protection against sodium valproate injury in isolated hepatocytes by alpha-tocopherol and N,N'-diphenyl-p-phenylenediamine. 1984

K N Buchi, and P D Gray, and D E Rollins, and K G Tolman

The possibility that lipid peroxidation is involved in valproic acid (VPA) hepatotoxicity was explored by testing the ability of the free-radical scavengers alpha-tocopherol (vitamin E) and N,N'-diphenyl-p-phenylenediamine (DPPD) to protect against VPA toxicity. Rat hepatocyte cultures were treated with toxic doses of VPA, in conjunction with varying doses of vitamin E and DPPD. Lactate dehydrogenase (LDH) release into the culture media was used to calculate an LDH index as a measure of toxicity. Vitamin E afforded increasing protection against VPA toxicity at concentrations of 1.0 to 4.0 microM but then leveled off and did not give complete protection at concentrations up to 8.0 microM. No protection was seen at less than 1.0 microM. DPPD showed increasing protection from 0.05 to 0.50 microM, with complete protection at the highest concentration. These data indicate that VPA toxicity can be prevented by simultaneous administration of free-radical scavengers and support the concept that VPA hepatotoxicity is due to lipid peroxidation.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010655 Phenylenediamines Aniline compounds that contain two amino groups. They are used as a precursor in the synthesis of HETEROCYCLIC COMPOUNDS and POLYMERS. p-Phenylenediamine is used in the manufacture of HAIR DYES and is an ALLERGEN.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D014635 Valproic Acid A fatty acid with anticonvulsant and anti-manic properties that is used in the treatment of EPILEPSY and BIPOLAR DISORDER. The mechanisms of its therapeutic actions are not well understood. It may act by increasing GAMMA-AMINOBUTYRIC ACID levels in the brain or by altering the properties of VOLTAGE-GATED SODIUM CHANNELS. Dipropyl Acetate,Divalproex,Sodium Valproate,2-Propylpentanoic Acid,Calcium Valproate,Convulsofin,Depakene,Depakine,Depakote,Divalproex Sodium,Ergenyl,Magnesium Valproate,Propylisopropylacetic Acid,Semisodium Valproate,Valproate,Valproate Calcium,Valproate Sodium,Valproic Acid, Sodium Salt (2:1),Vupral,2 Propylpentanoic Acid
D014810 Vitamin E A generic descriptor for all TOCOPHEROLS and TOCOTRIENOLS that exhibit ALPHA-TOCOPHEROL activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of ISOPRENOIDS.

Related Publications

K N Buchi, and P D Gray, and D E Rollins, and K G Tolman
December 1958, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
K N Buchi, and P D Gray, and D E Rollins, and K G Tolman
December 1968, Experimental and molecular pathology,
K N Buchi, and P D Gray, and D E Rollins, and K G Tolman
February 1988, Pharmacology & toxicology,
K N Buchi, and P D Gray, and D E Rollins, and K G Tolman
January 1985, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan,
K N Buchi, and P D Gray, and D E Rollins, and K G Tolman
December 1977, Bulletin of environmental contamination and toxicology,
K N Buchi, and P D Gray, and D E Rollins, and K G Tolman
January 1960, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
K N Buchi, and P D Gray, and D E Rollins, and K G Tolman
November 1956, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
K N Buchi, and P D Gray, and D E Rollins, and K G Tolman
March 1994, Xenobiotica; the fate of foreign compounds in biological systems,
K N Buchi, and P D Gray, and D E Rollins, and K G Tolman
February 1996, Pediatric research,
K N Buchi, and P D Gray, and D E Rollins, and K G Tolman
November 1962, Endocrinology,
Copied contents to your clipboard!