[DNA homology study of Corynebacterium diphtheriae v. gravis groups I, II and III, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis (ovis)]. 1984

M D Krylova, and A M Lysenko

The homology of genomes within Krylova 's groups I, II and III of C. diphtheriae, including toxigenic C. diphtheriae and their nontoxigenic precursors within the same group, was confirmed by the method of DNA/DNA molecular hybridization; the homology of DNA within the groups was 89-103%, the thermostability of heteroduplexes being high (on the level of homoduplexes ). The heterogeneity of genomes within these 3 groups of cultivar gravis was confirmed, which made it possible to consider C. diphtheriae, groups I, II and III, to belong to different, though closely related species; in intergroup hybridization the homology of DNA varied, as a rule, between 66% and 73%, while the thermostability of heteroduplexes was low: delta T50 was -3 degrees C to -6 degrees C. The differences in genomes (on the level of different species) between 3 groups of C. diptheriae v. gravis on one hand and C. diphtheriae v. mitis C7 (-) tox- and its convertant C7 (beta) tox+ of phage tox+ on the other hand (DNA homology being 56-62%), as well as between C. diphtheriae v. intermedius No. 328 tox+ on one hand and the representatives of 3 groups of C. diphtheriae v. gravis and C. diphtheriae v. mitis, strain C7 (beta) tox+, on the other hand (DNA homology being 42-43%) were revealed. The heterogeneity of genomes (on the level of different genera) was revealed between C. diphtheriae strains, cultivars gravis (groups I, II and III), mitis (C7(-) tox- and C7 (beta) tox+) and intermedius (No. 328 tox+) on one hand and C. ulcerans and C. pseudotuberculosis (ovis) strains on the other hand; DNA homology was 11-17% for C. ulcerans and 22-26% for C. pseudotuberculosis (ovis), the thermostability of heteroduplexes being at the lowest level (delta T50 was -11 degrees C to -13 degrees C). As a result, C. diphtheriae, classified by Bergey as a single species, was found to comprise 5 species detected by means of marking in accordance with their phenotypical features and genome structure, carried out by the method of DNA/DNA molecular hybridization; among these species were group I, II and III strains of cultivar gravis, strain C7 of cultivar mitis and strain No. 328 of cultivar intermedius. C. ulcerans and C. pseudotuberculosis (ovis) strains investigated in this study can possibly be placed outside the genus including 5 C. diphtheriae species.

UI MeSH Term Description Entries
D009692 Nucleic Acid Heteroduplexes Double-stranded nucleic acid molecules (DNA-DNA or DNA-RNA) which contain regions of nucleotide mismatches (non-complementary). In vivo, these heteroduplexes can result from mutation or genetic recombination; in vitro, they are formed by nucleic acid hybridization. Electron microscopic analysis of the resulting heteroduplexes facilitates the mapping of regions of base sequence homology of nucleic acids. Heteroduplexes, Nucleic Acid,Heteroduplex DNA,Acid Heteroduplexes, Nucleic,DNA, Heteroduplex
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D003352 Corynebacterium A genus of asporogenous bacteria that is widely distributed in nature. Its organisms appear as straight to slightly curved rods and are known to be human and animal parasites and pathogens.
D003353 Corynebacterium diphtheriae A species of gram-positive, asporogenous bacteria in which three cultural types are recognized. These types (gravis, intermedius, and mitis) were originally given in accordance with the clinical severity of the cases from which the different strains were most frequently isolated. This species is the causative agent of DIPHTHERIA.
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M D Krylova, and A M Lysenko
December 1968, Archives roumaines de pathologie experimentales et de microbiologie,
M D Krylova, and A M Lysenko
February 1983, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
M D Krylova, and A M Lysenko
July 1987, Proceedings of the National Academy of Sciences of the United States of America,
M D Krylova, and A M Lysenko
August 2019, Microbiology (Reading, England),
Copied contents to your clipboard!