High-performance hydrophobic interaction chromatography of proteins. 1984

J L Fausnaugh, and E Pfannkoch, and S Gupta, and F E Regnier

A new, weakly hydrophobic, high-performance liquid chromatography column has been developed for the separation of native proteins based on their relative hydrophobicities. Starting with a covalently bound, hydrophilic polyamine matrix, packing materials were synthesized through acylation with anhydrides and acid chlorides of increasing chain length to obtain increasingly hydrophobic surfaces. Proteins in aqueous buffers were induced to bind hydrophobically to the columns by the use of high salt concentrations in the mobile phase. Elution was achieved by decreasing the ionic strength of the solvent in a linear gradient. A mixture of cytochrome c, conalbumin, and beta-glucosidase was used as a standard to test the resolving power of newly synthesized columns. On a 4-cm butyrate column, baseline resolution was achieved in 20 min with a gradient of 3.0 mu sodium sulfate in 0.1 M potassium phosphate buffer, pH 7.0, to water. The static loading capacity for each column was determined using a hemoglobin binding assay. Capacities normally ranged between 150 and 180 mg of hemoglobin per gram of support. Since proteins are not denatured in hydrophobic interaction chromatography, enzymes eluted from the column retained enzymatic activity. Samples of alpha-amylase and beta-glucosidase ranging in size from 10 to 200 micrograms were recovered from the butyrate column with greater than 92% enzymatic activity in all cases. In a single trial, the enzyme citrate synthase was recovered from the benzoate column with 92% retention of enzymatic activity.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D000516 alpha-Amylases Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units. Taka-Amylase A,alpha-Amylase,Alpha-Amylase Bayer,Maxilase,Mégamylase,alpha-1,4-D-Glucanglucanohydrolase,Alpha Amylase Bayer,AlphaAmylase Bayer,Taka Amylase A,TakaAmylase A,alpha 1,4 D Glucanglucanohydrolase,alpha Amylase,alpha Amylases
D001617 beta-Glucosidase An exocellulase with specificity for a variety of beta-D-glycoside substrates. It catalyzes the hydrolysis of terminal non-reducing residues in beta-D-glucosides with release of GLUCOSE. Cellobiases,Amygdalase,Cellobiase,Emulsion beta-D-Glucosidase,Gentiobiase,Emulsion beta D Glucosidase,beta Glucosidase,beta-D-Glucosidase, Emulsion
D012997 Solvents Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed) Solvent
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

J L Fausnaugh, and E Pfannkoch, and S Gupta, and F E Regnier
January 1987, Advances in chromatography,
J L Fausnaugh, and E Pfannkoch, and S Gupta, and F E Regnier
January 2004, Methods in molecular biology (Clifton, N.J.),
J L Fausnaugh, and E Pfannkoch, and S Gupta, and F E Regnier
January 1996, Methods in enzymology,
J L Fausnaugh, and E Pfannkoch, and S Gupta, and F E Regnier
May 2001, Journal of biotechnology,
J L Fausnaugh, and E Pfannkoch, and S Gupta, and F E Regnier
December 1988, Journal of chromatography,
J L Fausnaugh, and E Pfannkoch, and S Gupta, and F E Regnier
July 1987, Journal of chromatography,
J L Fausnaugh, and E Pfannkoch, and S Gupta, and F E Regnier
June 1985, Journal of chromatography,
J L Fausnaugh, and E Pfannkoch, and S Gupta, and F E Regnier
December 1986, Journal of chromatography,
J L Fausnaugh, and E Pfannkoch, and S Gupta, and F E Regnier
December 1989, Journal of chromatography,
J L Fausnaugh, and E Pfannkoch, and S Gupta, and F E Regnier
August 1997, Journal of chromatography. A,
Copied contents to your clipboard!