Adherence of Pseudomonas aeruginosa to human tracheobronchial mucin. 1984

S Vishwanath, and R Ramphal

A microtiter plate assay was developed to study the adherence of Pseudomonas aeruginosa to purified human tracheobronchial mucin. The wells of the plates were treated with silicon to minimize nonspecific binding of bacteria and then coated with a solution of purified human tracheobronchial mucin. Bacteria were added to the wells, and the plates were incubated at 37 degrees C. The wells were washed 15 times in an automated microtiter plate washer, and the bacteria bound to wells were desorbed with Triton X-100 and plated for enumeration. Scanning electron microscopy verified bacterial adherence to the mucin-coated wells and desorption of bacteria by Triton X-100. Adherence of P. aeruginosa increased as the concentration of mucin used to coat the wells was increased, with saturation occurring at 0.5 microgram of mucin protein per ml. Other parameters that affected adherence included the time of incubation and concentration of bacteria. Similar studies with strains of Escherichia coli and Klebsiella pneumoniae indicated a relative lack of binding of these bacteria to mucin. In comparing different strains of P. aeruginosa, there were small differences in binding between strains. It is inferred that there may be specific sites on human tracheobronchial mucin which facilitate this preferential binding.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007711 Klebsiella pneumoniae Gram-negative, non-motile, capsulated, gas-producing rods found widely in nature and associated with urinary and respiratory infections in humans. Bacillus pneumoniae,Bacterium pneumoniae crouposae,Hyalococcus pneumoniae,Klebsiella pneumoniae aerogenes,Klebsiella rhinoscleromatis
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009077 Mucins High molecular weight mucoproteins that protect the surface of EPITHELIAL CELLS by providing a barrier to particulate matter and microorganisms. Membrane-anchored mucins may have additional roles concerned with protein interactions at the cell surface. Mucin
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

S Vishwanath, and R Ramphal
April 1992, Infection and immunity,
S Vishwanath, and R Ramphal
March 1987, Infection and immunity,
S Vishwanath, and R Ramphal
November 1988, Nihon Kyobu Shikkan Gakkai zasshi,
S Vishwanath, and R Ramphal
January 2003, Acta microbiologica Polonica,
S Vishwanath, and R Ramphal
June 2001, Clinical & experimental ophthalmology,
S Vishwanath, and R Ramphal
June 2003, The European respiratory journal,
S Vishwanath, and R Ramphal
June 1987, Infection and immunity,
S Vishwanath, and R Ramphal
April 1989, Infection and immunity,
Copied contents to your clipboard!