Activation of glycogen synthase by insulin in rat adipocytes. Evidence of hormonal stimulation of multisite dephosphorylation by glucose transport-dependent and -independent pathways. 1984

J C Lawrence, and C James

Adipocytes were incubated with [32P]phosphate to achieve steady state labeling of glycogen synthase. The enzyme was then rapidly immunoprecipitated and subjected to electrophoresis on polyacrylamide slab gels in the presence of sodium dodecyl sulfate. The 32P-labeled glycogen synthase had an apparent molecular weight ( Mapp ) equal to 90,000. All of the [32P]phosphate could be recovered in two cyanogen bromide fragments. The larger fragment, CB-2 ( Mapp = 28,000), contained about five times more [32P]phosphate than the smaller fragment, CB-1 ( Mapp = 15,500). Insulin increased the activity ratio (-glucose-6-P/+glucose-6-P) of glycogen synthase from 0.12 to 0.26, but did not decrease the amount of [32P]phosphate in the enzyme. However, insulin promoted the formation of species of CB-2 of lower Mapp , suggesting dephosphorylation of sites that affected the electrophoretic mobility of the fragment. Glucose did not affect the mobility of CB-2, but slightly increased the activity ratio and decreased the [32P] phosphate by approximately 20%. With insulin plus glucose, the increase in activity ratio was much greater than the additive effects of either agent alone. The combination decreased the [32P]phosphate in each cyanogen bromide fragment by approximately 60%, indicating that the synergistic activation was due to enhanced dephosphorylation of multiple sites. 2-Deoxyglucose also promoted dephosphorylation of glycogen synthase, decreasing the 32P content of CB-1 and CB-2 by approximately 40% each. 3-O-Methylglucose was without effect. The results presented suggest that the activation of glycogen synthase by insulin via a glucose transport-dependent pathway may involve increased intracellular glucose-6-P which promotes dephosphorylation of sites in both CB-1 and CB-2. Activation by a glucose transport-independent pathway appears to be confined to sites located in CB-2.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D008757 Methylglucosides Methylglucopyranosides
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006006 Glycogen Synthase An enzyme that catalyzes the transfer of D-glucose from UDPglucose into 1,4-alpha-D-glucosyl chains. EC 2.4.1.11. Glycogen (Starch) Synthase,Glycogen Synthetase,Glycogen Synthase I,Synthase D,Synthase I,UDP-Glucose Glycogen Glucosyl Transferase,Synthase, Glycogen,Synthetase, Glycogen,UDP Glucose Glycogen Glucosyl Transferase
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J C Lawrence, and C James
October 1989, The American journal of physiology,
J C Lawrence, and C James
June 1979, Canadian journal of biochemistry,
J C Lawrence, and C James
January 2010, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Copied contents to your clipboard!