Thyrotropin-releasing hormone increases cytosolic free Ca2+ in clonal pituitary cells (GH3 cells): direct evidence for the mobilization of cellular calcium. 1984

W Schlegel, and C B Wollheim

Changes in the cytosolic free Ca2+ concentration following cell surface receptor activation have been proposed to mediate a wide variety of cellular responses. Using the specific Ca2+ chelator quin2 as a fluorescent intracellular probe, we measured the Ca2+ levels in the cytosol of clonal rat pituitary cells, GH3 cells. We demonstrate that thyrotropin-releasing hormone (TRH) at nanomolar concentrations leads to a rapid and transient increase in cytosolic Ca2+. This increase was found to occur in Ca2+-free media in the presence of EGTA, thus at extracellular Ca2+ levels that are below the cytosolic concentrations, and was not prevented by verapamil, a Ca2+ channel blocker. Depolarization of GH3 cells with K+, which can mimic the action of TRH on prolactin release, increased cytosolic Ca2+ levels only in the presence of free extracellular Ca2+, and this increase could be blocked by verapamil. These data show that the mobilization of intracellular Ca2+ due to TRH action that has been proposed by previous studies actually leads to an increase in cytosolic free Ca2+. The kinetic features of this response emphasize the key role of cytosolic free Ca2+ in stimulus-secretion coupling.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000634 Aminoquinolines Quinolines substituted in any position by one or more amino groups.

Related Publications

W Schlegel, and C B Wollheim
March 1980, Endocrinology,
W Schlegel, and C B Wollheim
October 1995, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!