Liquid propane jet-freezing, freeze-drying and rotary replication of the cytoskeleton and plasma membrane associated structures in human monocytes. 1984

T Espevik, and A Elgsaeter

We have studied the cytoskeleton and plasma membrane associated structures of human monocytes using liquid propane jet-freezing, freeze-drying and rotary replication. We find that the cytoskeleton of these cells consists mainly of actin filaments. The actin filaments were identified by their ability to bind myosin sub-fragment S1. A large fraction of these actin filaments radiates from dense cytoskeletal foci. The presence of such actin filament rich foci also in unfrozen cells was demonstrated using immunofluorescence light microscopic techniques. In addition to coated pits a network of thin fibrils (diameter 4-5 nm) were observed on the protoplasmic side of the plasma membrane facing the substrate. These results indicate that liquid propane jet-freezing may represent a simple, inexpensive alternative to impact freezing at liquid helium temperature for obtaining the high cooling rate necessary for successful freeze-drying and rotary replication of cytoskeletal structures.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003034 Coated Pits, Cell-Membrane Specialized regions of the cell membrane composed of pits coated with a bristle covering made of the protein CLATHRIN. These pits are the entry route for macromolecules bound by cell surface receptors. The pits are then internalized into the cytoplasm to form the COATED VESICLES. Bristle-Coated Pits,Cell-Membrane Coated Pits,Bristle Coated Pits,Bristle-Coated Pit,Cell Membrane Coated Pits,Cell-Membrane Coated Pit,Coated Pit, Cell-Membrane,Coated Pits, Cell Membrane,Pit, Bristle-Coated,Pit, Cell-Membrane Coated,Pits, Bristle-Coated,Pits, Cell-Membrane Coated
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005612 Freeze Drying Method of tissue preparation in which the tissue specimen is frozen and then dehydrated at low temperature in a high vacuum. This method is also used for dehydrating pharmaceutical and food products. Lyophilization,Drying, Freeze,Dryings, Freeze,Freeze Dryings,Lyophilizations
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

T Espevik, and A Elgsaeter
September 1980, Mikroskopie,
T Espevik, and A Elgsaeter
April 1972, Saishin igaku. Modern medicine,
T Espevik, and A Elgsaeter
January 1954, Fertility and sterility,
T Espevik, and A Elgsaeter
September 1991, Journal of electron microscopy technique,
T Espevik, and A Elgsaeter
November 1975, Proceedings of the Royal Society of London. Series B, Biological sciences,
T Espevik, and A Elgsaeter
February 1983, Journal of ultrastructure research,
T Espevik, and A Elgsaeter
May 2020, International journal of pharmaceutics,
T Espevik, and A Elgsaeter
January 1967, Cryobiology,
T Espevik, and A Elgsaeter
August 1957, The American journal of physiology,
Copied contents to your clipboard!