Glycogenolytic effects of the calcium ionophore A23187, but not of vasopressin or angiotensin, in foetal-rat hepatocytes. 1984

M Freemark, and S Handwerger

Vasopressin, angiotensin and phenylephrine stimulate glycogenolysis in postnatal rat liver by a Ca2+-mediated mechanism not involving cyclic AMP. To determine whether these hormones promote glycogenolysis in foetal liver, we have examined their effects, and those of the Ca2+ ionophore A23187, on glycogen metabolism in cultured foetal-rat hepatocytes. Vasopressin and angiotensin (0.1 nM-0.1 microM) had no effects on either glycogen synthesis (as assessed by [14C]glucose incorporation into glycogen) or phosphorylase a activity. However, A23187 at 1 and 10 microM inhibited glycogen synthesis by 31.3 and 89.1% respectively (both P less than 0.001) and stimulated phosphorylase a activity by 66.9 and 184.1% respectively (both P less than 0.01). Incubation of cells in Ca2+-deficient medium attenuated the effects of 10 microM-A23187 on glycogen synthesis and abolished the effects of 1 microM-A23187. As in postnatal liver, glucagon (1 and 20 nM) and isoprenaline (1 and 10 microM), which activate adenylate cyclase, inhibited glycogen synthesis and stimulated phosphorylase a activity in foetal hepatocytes. The minimal effective concentration of phenylephrine was 10 times that of isoprenaline. These results indicate striking differences in the ontogeny of cyclic AMP-mediated and Ca2+-mediated processes which regulate hepatic glycogenolysis. Since increases in cytosolic Ca2+ induce glycogenolysis in foetal-rat liver, the weak or absent responses to vasopressin, angiotensin and the alpha-adrenergic agonists may result from defects in hormone-receptor binding or in post-receptor events leading to the mobilization of intracellular Ca2+ stores.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008112 Liver Glycogen Glycogen stored in the liver. (Dorland, 28th ed) Hepatic Glycogen,Glycogen, Hepatic,Glycogen, Liver
D010762 Phosphorylase a The active form of GLYCOGEN PHOSPHORYLASE that is derived from the phosphorylation of PHOSPHORYLASE B. Phosphorylase a is deactivated via hydrolysis of phosphoserine by PHOSPHORYLASE PHOSPHATASE to form PHOSPHORYLASE B.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Freemark, and S Handwerger
January 1987, Toxicology and applied pharmacology,
M Freemark, and S Handwerger
January 1987, Neurotoxicology and teratology,
M Freemark, and S Handwerger
September 1981, Toxicology and applied pharmacology,
M Freemark, and S Handwerger
October 1979, The Journal of pharmacology and experimental therapeutics,
M Freemark, and S Handwerger
August 1987, Neuroscience letters,
Copied contents to your clipboard!