Biosynthesis of intestinal microvillar proteins. Intracellular processing of lactase-phlorizin hydrolase. 1984

E M Danielsen, and H Skovbjerg, and O Norén, and H Sjöström

The biosynthesis of pig small intestinal lactase-phlorizin hydrolase (EC 3.2.1.23-62) was studied by labelling of organ cultured mucosal explants with [35S]methionine. The earliest detactable form of the enzyme was an intracellular, membrane-bound polypeptide of Mr 225 000, sensitive to endo H as judged by its increased electrophoretic mobility (Mr 210 000 after treatment). The labelling of this form decreased during a chase of 120 min and instead two polypeptides of Mr 245 000 and 160 000 occurred, which both barely had their electrophoretic mobility changed by treatment with endo H. The Mr 160 000 polypeptide is of the same size as the mature lactase-phlorizin hydrolase and was the only form expressed in the microvillar membrane. Together, these data are indicative of an intracellular proteolytic cleavage during transport. The presence of leupeptin during labelling prevented the appearance of the Mr 160 000 form but not that of the Mr 245 000 polypeptide, suggesting that the proteolytic cleavage takes place after trimming and complex glycosylation. The proteolytic cleavage was not essential for the transport since the precursor was expressed in the microvillar membrane in the presence of leupeptin.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010694 Lactase-Phlorizin Hydrolase A multifunctional protein that contains two enzyme domains. The first domain (EC 3.2.1.62) hydrolyzes glycosyl-N-acylsphingosine to a sugar and N-acylsphingosine. The second domain (EC 3.2.1.108) hydrolyzes LACTOSE and is found in the intestinal brush border membrane. Loss of activity for this enzyme in humans results in LACTOSE INTOLERANCE. Glycosylceramidase,Phloretin-Glucosidase,Phlorizin Hydrolase,Glycosyl Ceramidase,Lactase-Glycosylceramidase,Ceramidase, Glycosyl,Hydrolase, Lactase-Phlorizin,Hydrolase, Phlorizin,Lactase Glycosylceramidase,Lactase Phlorizin Hydrolase,Phloretin Glucosidase
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme
D005696 Galactosidases A family of galactoside hydrolases that hydrolyze compounds with an O-galactosyl linkage. EC 3.2.1.-. Galactosidase

Related Publications

E M Danielsen, and H Skovbjerg, and O Norén, and H Sjöström
January 1990, Biochemistry,
E M Danielsen, and H Skovbjerg, and O Norén, and H Sjöström
December 1987, The Journal of biological chemistry,
E M Danielsen, and H Skovbjerg, and O Norén, and H Sjöström
August 1995, The Journal of biological chemistry,
E M Danielsen, and H Skovbjerg, and O Norén, and H Sjöström
January 1984, FEBS letters,
E M Danielsen, and H Skovbjerg, and O Norén, and H Sjöström
June 1989, European journal of cell biology,
E M Danielsen, and H Skovbjerg, and O Norén, and H Sjöström
August 1998, Alcoholism, clinical and experimental research,
E M Danielsen, and H Skovbjerg, and O Norén, and H Sjöström
October 1994, The Journal of biological chemistry,
E M Danielsen, and H Skovbjerg, and O Norén, and H Sjöström
January 1987, The Biochemical journal,
E M Danielsen, and H Skovbjerg, and O Norén, and H Sjöström
February 1992, The Biochemical journal,
E M Danielsen, and H Skovbjerg, and O Norén, and H Sjöström
April 2001, Histology and histopathology,
Copied contents to your clipboard!