24,25(OH)2D3, bone formation, and bone resorption in vitamin D-deficient, azotemic rats. 1984

W G Goodman, and D J Baylink, and D J Sherrard

Bone formation, mineralization, and resorption were measured in vitamin D-deficient, azotemic rats given two different dosages of 24,25(OH)2D3 daily and in vehicle-treated controls (C). The intraperitoneal administration of 65 pmol over a 10 day period corrected the hypocalcemia observed in C, whereas 130 pmol produced mild hypercalcemia. Both dosages reduced osteoid width, osteoid area, and mineralization front width from control values. The rates of bone and matrix formation were unaffected by treatment. In C, matrix formation exceeded bone formation and resulted in osteoid accumulation; both dosages of 24,25(OH)2D3 reversed this relationship such that bone formation exceeded matrix formation in each treatment group. The rates of osteoid maturation and initial mineralization increased during repletion with 24,25(OH)2D3 at both dosage levels. However, the serum calcium concentration was correlated with both osteoid maturation rate (r = 0.68, P less than 0.01) and initial mineralization rate (r = 0.63, P less than 0.01) when all three experimental groups were considered. Bone resorption was unchanged from control values during treatment with 24,25(OH)2D3. The results suggest that 24,25(OH)2D3 promotes the maturation and mineralization of osteoid, and that this metabolite differs in its effects on bone formation and resorption. It is not clear, however, that the changes in bone dynamics observed are independent of the calcemic response induced by metabolite repletion under the conditions of this experiment.

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D008297 Male Males
D010012 Osteogenesis The process of bone formation. Histogenesis of bone including ossification. Bone Formation,Ossification, Physiologic,Endochondral Ossification,Ossification,Ossification, Physiological,Osteoclastogenesis,Physiologic Ossification,Endochondral Ossifications,Ossification, Endochondral,Ossifications,Ossifications, Endochondral,Osteoclastogeneses,Physiological Ossification
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D001806 Blood Urea Nitrogen The urea concentration of the blood stated in terms of nitrogen content. Serum (plasma) urea nitrogen is approximately 12% higher than blood urea nitrogen concentration because of the greater protein content of red blood cells. Increases in blood or serum urea nitrogen are referred to as azotemia and may have prerenal, renal, or postrenal causes. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984) BUN,Nitrogen, Blood Urea,Urea Nitrogen, Blood
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D001846 Bone Development The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS. Bone Growth
D001857 Bone Matrix Extracellular substance of bone tissue consisting of COLLAGEN fibers, ground substance, and inorganic crystalline minerals and salts. Bone Matrices,Matrices, Bone,Matrix, Bone
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone

Related Publications

W G Goodman, and D J Baylink, and D J Sherrard
January 1978, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
W G Goodman, and D J Baylink, and D J Sherrard
June 1970, The Journal of clinical investigation,
W G Goodman, and D J Baylink, and D J Sherrard
January 1987, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
W G Goodman, and D J Baylink, and D J Sherrard
June 2005, European journal of clinical investigation,
W G Goodman, and D J Baylink, and D J Sherrard
January 1985, Mineral and electrolyte metabolism,
W G Goodman, and D J Baylink, and D J Sherrard
November 1985, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
W G Goodman, and D J Baylink, and D J Sherrard
December 1979, Research communications in chemical pathology and pharmacology,
W G Goodman, and D J Baylink, and D J Sherrard
October 1987, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Copied contents to your clipboard!