Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. 1984

T B Bolton, and R J Lang, and T Takewaki

Membrane potential was recorded by micro-electrode in segments of small (200-500 microns o.d.) mesenteric arteries of guinea-pig. Isotonic shortening was recorded in helical strips cut from these arteries. Raising the external potassium concentration, [K+]o, caused shortening and substantial depolarization. The threshold for contraction was about 30 mM which corresponded to a membrane potential of about -45 mV. Since high-potassium contractions were abolished in calcium-free solution it was suggested that they occur due to potential-sensitive calcium channels opening positive to about -45 mV. Noradrenaline weakly depolarized the muscle and produced contractions resistant to calcium-free conditions. It was suggested that noradrenaline contractions are mainly caused by mechanisms other than the opening of potential-sensitive calcium channels, namely entry of calcium via other channels and release of stored calcium. Carbachol had no effect on basal tension but inhibited shortening by noradrenaline or by raising [K+]o. The inhibitory effect of carbachol on tension under various conditions was associated with hyperpolarization or depolarization in a range negative to -45 mV, or no effect on potential, so that modulation of the number of open potential-sensitive calcium channels could not be evoked to explain its relaxant action. Removal or destruction of the endothelium by rubbing or by distilled water perfusion left tension responses to noradrenaline or raised [K+]o essentially unchanged. However, the inhibitory effect of carbachol on tension was attenuated and hyperpolarization of the resting artery was converted to a depolarization. It was concluded that carbachol has both a strong inhibitory and a weak excitatory effect on these vascular smooth muscle cells. Membrane potential changes are not essential to its inhibitory action but may, by closing potential-sensitive calcium channels, sometimes reinforce it. Hyperpolarization by carbachol may be caused by a factor released by the action of carbachol on endothelial cells: in its absence carbachol may weakly depolarize but this alone is normally insufficient to generate tension.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

T B Bolton, and R J Lang, and T Takewaki
December 1981, The Journal of physiology,
T B Bolton, and R J Lang, and T Takewaki
May 1987, British journal of pharmacology,
T B Bolton, and R J Lang, and T Takewaki
December 1976, The Journal of physiology,
T B Bolton, and R J Lang, and T Takewaki
June 1991, The Journal of physiology,
T B Bolton, and R J Lang, and T Takewaki
October 1977, The Journal of physiology,
T B Bolton, and R J Lang, and T Takewaki
December 1981, The Journal of physiology,
T B Bolton, and R J Lang, and T Takewaki
January 1988, Archives internationales de pharmacodynamie et de therapie,
T B Bolton, and R J Lang, and T Takewaki
January 1985, Artery,
T B Bolton, and R J Lang, and T Takewaki
December 1978, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!