Serum sensitivity of a Pseudomonas aeruginosa mucoid strain. 1984

N L Schiller, and M J Alazard, and R S Borowski

The susceptibility of Pseudomonas aeruginosa 144M (a mucoid strain isolated from the sputum of a cystic fibrosis patient) to the bactericidal activity of pooled fresh normal human serum (FHS) was examined. FHS at concentrations of greater than or equal to 2.5% was capable of killing greater than 95% of strain 144M. Strain 144M was killed by FHS in a dose-dependent manner. Although either immunoglobulin M (IgM) or IgG was bactericidal in the presence of complement, IgM was about 10 times as effective as IgG. However, optimal killing activity required both IgM and IgG and complement, activated by the classical pathway. A role for lysozyme in the killing of 144M was demonstrated only when low concentrations of FHS were used. In contrast to 144M, P. aeruginosa strains 144NM and 144M(SR) were totally resistant to FHS at all of the concentrations tested (up to 50%). Neither the FHS susceptibility of 144M nor the FHS resistance of 144NM or 144M(SR) was altered by choice of growth medium, growth phase, or temperature of growth. Results of absorption studies with whole organisms, isolated outer membrane preparations, or lipopolysaccharide (LPS) from each strain suggest that the antigen(s) which binds the bactericidal immunoglobulins is accessible on the surface of 144M but not on the surface of 144NM or 144M(SR), is insensitive to trypsin treatment, and is believed to be LPS. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the three LPS preparations demonstrated that 144M LPS contained primarily lipid-A-core polysaccharide components, whereas the LPS from 144NM and 144M(SR) were heterogeneous, with various degrees of O-side-chain substitution. These results suggest that at least one target for bactericidal antibody on the surface of 144M is contained in the rough LPS of this strain.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D001770 Blood Bactericidal Activity The natural bactericidal property of BLOOD due to normally occurring antibacterial substances such as beta lysin, leukin, etc. This activity needs to be distinguished from the bactericidal activity contained in a patient's serum as a result of antimicrobial therapy, which is measured by a SERUM BACTERICIDAL TEST. Activities, Blood Bactericidal,Activity, Blood Bactericidal,Bactericidal Activities, Blood,Bactericidal Activity, Blood,Blood Bactericidal Activities
D003171 Complement Pathway, Classical Complement activation initiated by the binding of COMPLEMENT C1 to ANTIGEN-ANTIBODY COMPLEXES at the COMPLEMENT C1Q subunit. This leads to the sequential activation of COMPLEMENT C1R and COMPLEMENT C1S subunits. Activated C1s cleaves COMPLEMENT C4 and COMPLEMENT C2 forming the membrane-bound classical C3 CONVERTASE (C4B2A) and the subsequent C5 CONVERTASE (C4B2A3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX. Classical Complement Pathway,Classical Complement Activation Pathway,Complement Activation Pathway, Classical
D000907 Antibodies, Bacterial Immunoglobulins produced in a response to BACTERIAL ANTIGENS. Bacterial Antibodies
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial

Related Publications

N L Schiller, and M J Alazard, and R S Borowski
October 1969, The Journal of medical laboratory technology,
N L Schiller, and M J Alazard, and R S Borowski
April 2015, Genome announcements,
N L Schiller, and M J Alazard, and R S Borowski
June 1971, Infection and immunity,
N L Schiller, and M J Alazard, and R S Borowski
November 1982, The American review of respiratory disease,
N L Schiller, and M J Alazard, and R S Borowski
March 1983, The American review of respiratory disease,
N L Schiller, and M J Alazard, and R S Borowski
November 1986, Diagnostic microbiology and infectious disease,
N L Schiller, and M J Alazard, and R S Borowski
January 1988, Nihon Kyobu Shikkan Gakkai zasshi,
N L Schiller, and M J Alazard, and R S Borowski
June 1971, American journal of clinical pathology,
N L Schiller, and M J Alazard, and R S Borowski
December 2012, Journal of bacteriology,
N L Schiller, and M J Alazard, and R S Borowski
February 2016, Genome announcements,
Copied contents to your clipboard!