Immunosuppression following 7,12-dimethylbenz[a]anthracene exposure in B6C3F1 mice. I. Effects on humoral immunity and host resistance. 1984

E C Ward, and M J Murray, and L D Lauer, and R V House, and R Irons, and J H Dean

It has previously been demonstrated that the polycyclic aromatic hydrocarbon (PAH), benzo(a)pyrene (B[a]P), suppresses the terminal step in B-cell differentiation, resulting in a decrease in antibody production to T-dependent and B-2 T-independent antigens. The purpose of this study was to ascertain if this effect was common to carcinogenic PAHs or specific for B[a]P. The PAH 7,12-dimethylbenz[a]anthracene (DMBA) was administered to B6C3F1 female mice by ten sc injections of 0.5, 5, or 10 micrograms/g over a 2-week period (i.e., total dose of 5, 50, and 100 micrograms/g). Immune function and host resistance assays were performed 3 to 5 days following the last injection. The 10 micrograms/g dosage resulted in a marked decrease in spleen weights and spleen and bone marrow cellularity, while thymus and body weights were not significantly altered. The ability to generate B-lymphocyte colonies in vitro from spleen precursor cells was also suppressed at the 10 micrograms/g dose. Exposure to DMBA at 5 micrograms/g or greater resulted in a reduction of up to 97% in the number of IgM plaque-forming cells in response to the T-dependent antigen sheep red blood cells (SRBC). The IgG response to SRBC was similarly depressed. The IgM response to the hapten-conjugated T-independent antigens trinitrophenyl-lipopolysaccharide (TNP-LPS) (specific for B-1 cells) and trinitrophenyl (TNP)-Ficoll (specific for B-2 cells) was also depressed (88 and 97%, respectively) at 10 micrograms/g. DMBA exposure resulted in an increased susceptibility to challenge with the PYB6 transplantable sarcoma and the bacterium Listeria monocytogenes, in contrast to B[a]P exposure, which had no effect on host resistance assays. Thus, DMBA, a more potent carcinogen than B[a]P, produces a more extensive B-cell suppression than B[a]P as well as alters host resistance to tumor and bacterial challenge.

UI MeSH Term Description Entries
D007157 Immunologic Surveillance The theory that T-cells monitor cell surfaces and detect structural changes in the plasma membrane and/or surface antigens of virally or neoplastically transformed cells. Surveillance, Immunologic,Immunological Surveillance,Immunologic Surveillances,Immunological Surveillances,Surveillance, Immunological,Surveillances, Immunologic,Surveillances, Immunological
D007165 Immunosuppression Therapy Deliberate prevention or diminution of the host's immune response. It may be nonspecific as in the administration of immunosuppressive agents (drugs or radiation) or by lymphocyte depletion or may be specific as in desensitization or the simultaneous administration of antigen and immunosuppressive drugs. Antirejection Therapy,Immunosuppression,Immunosuppressive Therapy,Anti-Rejection Therapy,Therapy, Anti-Rejection,Therapy, Antirejection,Anti Rejection Therapy,Anti-Rejection Therapies,Antirejection Therapies,Immunosuppression Therapies,Immunosuppressions,Immunosuppressive Therapies,Therapies, Immunosuppression,Therapies, Immunosuppressive,Therapy, Immunosuppression,Therapy, Immunosuppressive
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010948 Viral Plaque Assay Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE. Bacteriophage Plaque Assay,Assay, Bacteriophage Plaque,Assay, Viral Plaque,Assays, Bacteriophage Plaque,Assays, Viral Plaque,Bacteriophage Plaque Assays,Plaque Assay, Bacteriophage,Plaque Assay, Viral,Plaque Assays, Bacteriophage,Plaque Assays, Viral,Viral Plaque Assays
D001772 Blood Cell Count The number of LEUKOCYTES and ERYTHROCYTES per unit volume in a sample of venous BLOOD. A complete blood count (CBC) also includes measurement of the HEMOGLOBIN; HEMATOCRIT; and ERYTHROCYTE INDICES. Blood Cell Number,Blood Count, Complete,Blood Cell Counts,Blood Cell Numbers,Blood Counts, Complete,Complete Blood Count,Complete Blood Counts,Count, Blood Cell,Count, Complete Blood,Counts, Blood Cell,Counts, Complete Blood,Number, Blood Cell,Numbers, Blood Cell
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody

Related Publications

E C Ward, and M J Murray, and L D Lauer, and R V House, and R Irons, and J H Dean
December 1987, Toxicology and applied pharmacology,
E C Ward, and M J Murray, and L D Lauer, and R V House, and R Irons, and J H Dean
March 1992, Toxicology and applied pharmacology,
E C Ward, and M J Murray, and L D Lauer, and R V House, and R Irons, and J H Dean
August 1991, Fundamental and applied toxicology : official journal of the Society of Toxicology,
E C Ward, and M J Murray, and L D Lauer, and R V House, and R Irons, and J H Dean
January 2008, Molecular pharmacology,
E C Ward, and M J Murray, and L D Lauer, and R V House, and R Irons, and J H Dean
January 1988, International journal of immunopharmacology,
E C Ward, and M J Murray, and L D Lauer, and R V House, and R Irons, and J H Dean
October 1971, Cancer research,
E C Ward, and M J Murray, and L D Lauer, and R V House, and R Irons, and J H Dean
January 1982, Carcinogenesis,
E C Ward, and M J Murray, and L D Lauer, and R V House, and R Irons, and J H Dean
January 1978, The Journal of organic chemistry,
E C Ward, and M J Murray, and L D Lauer, and R V House, and R Irons, and J H Dean
January 1970, Journal of the National Cancer Institute,
E C Ward, and M J Murray, and L D Lauer, and R V House, and R Irons, and J H Dean
August 1967, Cancer research,
Copied contents to your clipboard!