Complete amino acid sequence of the heavy-chain variable region from an A/J mouse antigen-nonbinding monoclonal antibody bearing the predominant arsonate idiotype. 1984

J A Smith, and M N Margolies

The 1F6 hybridoma protein, exhibiting the predominant cross-reactive idiotype (CRI) associated with the immune response to p-azophenylarsonate in A/J mice but failing to bind the hapten arsonate, was elicited following immunization with rat anti-CRI [Wysocki, L.J., & Sato, V. (1981) Eur. J. Immunol. 11, 832-839]. The dissociation of idiotype and antigen binding in this hybridoma provides an opportunity to determine structural features involved in antigen binding and idiotypic sites. The complete heavy-chain variable region (VH) amino acid sequence was obtained by automated Edman degradation of the intact chain and fragments due to CNBr cleavage, trypsin digestion, mild acid hydrolysis, and carboxypeptidase A digestion of a CNBr fragment. Comparison of the CRI+ arsonate-nonbinding 1F6 sequence with the CRI+ germ-line VH gene sequence reveals that the 1F6 heavy chain differs from the germ-line-encoded amino acid sequence at seven positions within VH [Siekevitz, M., Gefter, M. L., Brodeur, P., Riblet, R., & Marshak-Rothstein, A. (1982) Eur. J. Immunol. 12, 1023-1032]. The 1F6 VH appears to arise from the CRI+ germ-line VH by somatic mutation at at least seven amino acid residues, each of which could be due to a single nucleotide base change. The diversity (D) gene-encoded segment of 1F6 is similar to that of the CRI+ antigen-binding hybridoma 36-65 except for two amino acid substitutions. Further, the idiotype (CRI) is preserved despite use of a JH4 gene segment in 1F6 as compared to JH2 in all CRI+ arsonate-binding hybridomas examined to date.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007130 Immunoglobulin Idiotypes Unique genetically-controlled determinants present on ANTIBODIES whose specificity is limited to a single group of proteins (e.g., another antibody molecule or an individual myeloma protein). The idiotype appears to represent the antigenicity of the antigen-binding site of the antibody and to be genetically codetermined with it. The idiotypic determinants have been precisely located to the IMMUNOGLOBULIN VARIABLE REGION of both immunoglobin polypeptide chains. Idiotypes, Immunoglobulin,Ig Idiotypes,Idiotype, Ig,Idiotype, Immunoglobulin,Idiotypes, Ig,Ig Idiotype,Immunoglobulin Idiotype
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D008805 Mice, Inbred A An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mouse, Inbred A,Inbred A Mice,Inbred A Mouse
D010132 p-Azobenzenearsonate A hapten capable of eliciting both antibody formation and delayed hypersensitivity when bound to aromatic amino acids, polypeptides or proteins. It is used as an immunologic research tool. Azophenylarsonate,para-Azobenzenearsonate,p Azobenzenearsonate,para Azobenzenearsonate
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002268 Carboxypeptidases Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue. Carboxypeptidase
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J A Smith, and M N Margolies
December 1981, Proceedings of the National Academy of Sciences of the United States of America,
J A Smith, and M N Margolies
January 1996, Human antibodies and hybridomas,
Copied contents to your clipboard!