Dosimetric characterization of the 18-MV photon beam from the Siemens Mevatron 77 linear accelerator. 1984

J R Palta, and J A Meyer, and K R Hogstrom

A comprehensive set of dosimetric measurements has been made on the Mevatron 77.80.67 18-MV photon beam. Percentage depth dose, dose in the buildup region, field size dependence of output, transmission through lead, tray attenuation, and isodose curves for the open and wedged fields were measured using an ionization chamber in water and polystyrene phantoms. These dosimetric measurements sufficiently characterized the beam to permit clinical use. The depth dose at 10-cm depth for a 10 X 10 cm2 field at 100-cm source-to-skin distance (SSD) is 80.9%, which meets design specifications. Central axis depth-dose data were fitted to within 0.5% by a set of polynomial equations utilizing a two-dimensional linear regression analysis. Tissue-maximum ratios calculated from depth-dose data agree with measured data to within 2%. Output differences as large as 2.5% were measured for rectangular fields depending on which collimator jaws defined the long dimension of the field. The field size dependence of output was fit to within +/- 0.1% by a linear regression. The half-value thickness of the beam was measured to be 13 mm of lead.

UI MeSH Term Description Entries
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011882 Radiotherapy, High-Energy Radiotherapy using high-energy (megavolt or higher) ionizing radiation. Types of radiation include gamma rays, produced by a radioisotope within a teletherapy unit; x-rays, electrons, protons, alpha particles (helium ions) and heavy charged ions, produced by particle acceleration; and neutrons and pi-mesons (pions), produced as secondary particles following bombardment of a target with a primary particle. Megavolt Radiotherapy,High-Energy Radiotherapy,Radiotherapy, Megavolt,High Energy Radiotherapy,Radiotherapy, High Energy

Related Publications

J R Palta, and J A Meyer, and K R Hogstrom
January 1983, Medical physics,
J R Palta, and J A Meyer, and K R Hogstrom
August 1983, International journal of radiation oncology, biology, physics,
J R Palta, and J A Meyer, and K R Hogstrom
January 1987, Medical physics,
J R Palta, and J A Meyer, and K R Hogstrom
January 2017, Journal of medical physics,
J R Palta, and J A Meyer, and K R Hogstrom
January 1981, Medical physics,
J R Palta, and J A Meyer, and K R Hogstrom
February 1988, International journal of radiation oncology, biology, physics,
J R Palta, and J A Meyer, and K R Hogstrom
January 1985, Medical physics,
J R Palta, and J A Meyer, and K R Hogstrom
January 1995, Medical dosimetry : official journal of the American Association of Medical Dosimetrists,
J R Palta, and J A Meyer, and K R Hogstrom
July 2008, Journal of medical physics,
J R Palta, and J A Meyer, and K R Hogstrom
April 2008, Physics in medicine and biology,
Copied contents to your clipboard!