Ring chromosomes and rDNA magnification in Drosophila. 1984

S A Endow, and D J Komma, and K C Atwood

Tartof showed that ribosomal gene magnification in Drosophila was inhibited in a ring X chromosome. The present studies extend this observation by showing that ring X chromosomes are lost meiotically in male Drosophila undergoing ribosomal gene magnification as evidenced by the recovery of a lower number of ring-bearing progeny under magnifying conditions compared with nonmagnifying conditions. Associated with ring chromosome loss is a highly significant increase in the number of double-sized dicentric ring chromosomes in meiotic cells from magnifying males. These observations explain the failure of ring X chromosomes to magnify and imply that magnification in rod chromosomes occurs via a mechanism of unequal sister chromatid exchange. Our results support the hypothesis that the primary event of magnification is a sister chromatid exchange in the rDNA, that the frequency of sister strand exchanges is increased in magnifying flies, that a significant number of exchanges in magnifying flies occurs meiotically and that some of the exchanges are nonreciprocal. We have also found that autosomal mutations can affect both the frequency of abnormal ring structures and the ability of ring X chromosomes to magnify.

UI MeSH Term Description Entries
D008297 Male Males
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012303 Ring Chromosomes Aberrant chromosomes with no ends, i.e., circular. Chromosomes, Ring,Chromosome, Ring,Ring Chromosome

Related Publications

S A Endow, and D J Komma, and K C Atwood
December 1985, Proceedings of the National Academy of Sciences of the United States of America,
S A Endow, and D J Komma, and K C Atwood
September 1977, Molecular & general genetics : MGG,
S A Endow, and D J Komma, and K C Atwood
January 1980, Molecular & general genetics : MGG,
S A Endow, and D J Komma, and K C Atwood
February 1994, Molecular & general genetics : MGG,
S A Endow, and D J Komma, and K C Atwood
June 1987, Molecular & general genetics : MGG,
S A Endow, and D J Komma, and K C Atwood
August 1975, Molecular & general genetics : MGG,
S A Endow, and D J Komma, and K C Atwood
January 1974, Cold Spring Harbor symposia on quantitative biology,
S A Endow, and D J Komma, and K C Atwood
June 1972, Cell differentiation,
S A Endow, and D J Komma, and K C Atwood
January 1983, Molecular & general genetics : MGG,
S A Endow, and D J Komma, and K C Atwood
March 1971, Canadian journal of genetics and cytology. Journal canadien de genetique et de cytologie,
Copied contents to your clipboard!