Postprandial lipemia. A key for the conversion of high density lipoprotein2 into high density lipoprotein3 by hepatic lipase. 1984

J R Patsch, and S Prasad, and A M Gotto, and G Bengtsson-Olivecrona

In this study, we have investigated the effects of alimentary lipemia in 15 normotriglyceridemic individuals on high density lipoproteins2 (HDL2) with respect to structure, composition, and substrate efficacy for hepatic lipase in vitro. In the study subjects, HDL2 levels ranged widely from 4.7 to 151.7 mg/dl plasma. HDL2 were isolated in the postabsorptive (pa) state and in the postprandial (pp) state, i.e., 7 h after ingestion of a standard fatty meal. In going from the pa state to the pp state, HDL2 exhibited higher flotation rates and lower densities due to a decreased proportion of protein (38.7----36.2%) and a higher abundance in phospholipid (32.5----34.9%). There was a variable increase in triglyceride at the expense of cholesteryl esters; this increase was correlated positively with the magnitude of pp lipemia (r = 0.69, P less than 0.01) and inversely with HDL2 levels (r = -0.72, P less than 0.01). Hdl2 fractions were incubated with human hepatic lipase in vitro. Product lipoproteins formed from lipolysis of pa-HDL2 and triglyceride-poorer pp-HDL2 were reduced in phospholipid content (by 25 and 50%, respectively) but remained in the size and density range of native HDL2. By contrast, a major fraction of triglyceride-richer pp-HDL2 was converted to particles with density, size, and apoprotein composition of native HDL3. Changes consistent with these findings in vitro were observed in vivo also, where 15 h postprandially, individuals with high-level lipemia showed a decrease in HDL2 and rise in HDL3, while those with lower-level lipemia did not. This study indicates that the magnitude of postprandial lipemia determines the proportion of triglyceride in pp-HDL2, which in turn determines whether or not HDL2 are converted to HDL3 by hepatic lipase action.

UI MeSH Term Description Entries
D008049 Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3. Triacylglycerol Lipase,Tributyrinase,Triglyceride Lipase,Acid Lipase,Acid Lipase A,Acid Lipase B,Acid Lipase I,Acid Lipase II,Exolipase,Monoester Lipase,Triacylglycerol Hydrolase,Triglyceridase,Triolean Hydrolase,Hydrolase, Triacylglycerol,Hydrolase, Triolean,Lipase A, Acid,Lipase B, Acid,Lipase I, Acid,Lipase II, Acid,Lipase, Acid,Lipase, Monoester,Lipase, Triglyceride
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D005260 Female Females
D005502 Food Substances taken in by the body to provide nourishment. Foods
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001054 Apolipoproteins A Structural proteins of the alpha-lipoproteins (HIGH DENSITY LIPOPROTEINS), including APOLIPOPROTEIN A-I and APOLIPOPROTEIN A-II. They can modulate the activity of LECITHIN CHOLESTEROL ACYLTRANSFERASE. These apolipoproteins are low in atherosclerotic patients. They are either absent or present in extremely low plasma concentration in TANGIER DISEASE. Apo-A,ApoA

Related Publications

J R Patsch, and S Prasad, and A M Gotto, and G Bengtsson-Olivecrona
March 1982, Clinica chimica acta; international journal of clinical chemistry,
J R Patsch, and S Prasad, and A M Gotto, and G Bengtsson-Olivecrona
September 1992, Journal of lipid research,
J R Patsch, and S Prasad, and A M Gotto, and G Bengtsson-Olivecrona
September 1984, European journal of biochemistry,
J R Patsch, and S Prasad, and A M Gotto, and G Bengtsson-Olivecrona
May 1973, Journal of lipid research,
J R Patsch, and S Prasad, and A M Gotto, and G Bengtsson-Olivecrona
February 1986, Atherosclerosis,
J R Patsch, and S Prasad, and A M Gotto, and G Bengtsson-Olivecrona
August 1980, Atherosclerosis,
J R Patsch, and S Prasad, and A M Gotto, and G Bengtsson-Olivecrona
November 1982, Biochimica et biophysica acta,
J R Patsch, and S Prasad, and A M Gotto, and G Bengtsson-Olivecrona
August 1998, Metabolism: clinical and experimental,
J R Patsch, and S Prasad, and A M Gotto, and G Bengtsson-Olivecrona
March 1985, Atherosclerosis,
Copied contents to your clipboard!