Functional and molecular organisation of an antigen-specific suppressor factor from a T-cell hybridoma. 1980

M Taniguchi, and I Takei, and T Tada

Thymus-dependent (T) lymphocytes have been shown to have antigen specificity. The antigen receptor on T lymphocytes, in contrast to that on B lymphocytes, does not appear to be of the conventional immunoglobulin (Ig) type. Studies on the antigen-specific factors derived from helper and suppressor T cells (Ts) demonstrated that they possess determinants with antigen binding affinity and products of genes in the H-2 complex (MHC). Furthermore, antibodies against the variable region of Ig heavy chains or idiotypes have been shown to react with T-cell antigen receptors as well as antigen-specific helper and suppressor T-cell factors (TsF). It is, therefore, conceivable that at least two gene products are involved in the structural entity of these receptors: one each coded for by genes in either. To establish the molecular nature of the recognition component of T cells we have used homogeneous TsF from a T-cell hybridoma with a specific function. We report here that the antigen binding and I-J coded molecules on TsF are independently synthesised in the cytoplasm, and are secreted as an associated form of the two molecules; this association is required for antigen-specific suppression of antibody response.

UI MeSH Term Description Entries
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M Taniguchi, and I Takei, and T Tada
January 1989, Journal of immunology (Baltimore, Md. : 1950),
M Taniguchi, and I Takei, and T Tada
April 1985, Journal of immunology (Baltimore, Md. : 1950),
M Taniguchi, and I Takei, and T Tada
January 1985, Methods in enzymology,
M Taniguchi, and I Takei, and T Tada
September 1980, Transplantation proceedings,
M Taniguchi, and I Takei, and T Tada
August 1982, Surgery,
M Taniguchi, and I Takei, and T Tada
November 1986, Proceedings of the National Academy of Sciences of the United States of America,
M Taniguchi, and I Takei, and T Tada
January 1992, Transplant international : official journal of the European Society for Organ Transplantation,
M Taniguchi, and I Takei, and T Tada
January 1989, International archives of allergy and applied immunology,
M Taniguchi, and I Takei, and T Tada
April 1984, The Journal of experimental medicine,
M Taniguchi, and I Takei, and T Tada
August 1978, Nature,
Copied contents to your clipboard!