Effect of the adaptive response on the induction of the SOS pathway in E. coli K-12. 1980

M Defais, and P Jeggo, and L Samson, and P F Schendel

The adaptive-response is an inducible repair system of E. coli which reduces the mutagenic and cytotoxic effects of alkylation damage (Samson and Cairns, 1977). In adapted cells (cells exposed to sublethal doses of alkylating agents) the induction of W-reactivation and W-mutagenesis by alkylating agents is almost totally blocked. Despite the fact that adaptation has no detectable effect on UV mutagenesis in E. coli K-12, it does inhibit to some extent the UV and tif-1 mediated induction of SOS functions such as W-reactivation and lambda prophage induction. Furthermore, the kinetics of induction of W-mutagenesis following UV treatment are altered by adaptation. In this case the adaptive-response seems to specifically block the induction of an error-producing W-reactivating capacity which normally would increase soon after UV treatment, while affecting error-free W-reactivating systems to a lesser extent.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000477 Alkylating Agents Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases. Alkylating Agent,Alkylator,Alkylators,Agent, Alkylating,Agents, Alkylating
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D014775 Virus Activation The mechanism by which latent viruses, such as genetically transmitted tumor viruses (PROVIRUSES) or PROPHAGES of lysogenic bacteria, are induced to replicate and then released as infectious viruses. It may be effected by various endogenous and exogenous stimuli, including B-cell LIPOPOLYSACCHARIDES, glucocorticoid hormones, halogenated pyrimidines, IONIZING RADIATION, ultraviolet light, and superinfecting viruses. Prophage Excision,Prophage Induction,Virus Induction,Viral Activation,Activation, Viral,Activation, Virus,Activations, Viral,Activations, Virus,Excision, Prophage,Excisions, Prophage,Induction, Prophage,Induction, Virus,Inductions, Prophage,Inductions, Virus,Prophage Excisions,Prophage Inductions,Viral Activations,Virus Activations,Virus Inductions

Related Publications

M Defais, and P Jeggo, and L Samson, and P F Schendel
January 1991, Acta biochimica Polonica,
M Defais, and P Jeggo, and L Samson, and P F Schendel
July 1986, Mutation research,
M Defais, and P Jeggo, and L Samson, and P F Schendel
January 2000, Radiatsionnaia biologiia, radioecologiia,
M Defais, and P Jeggo, and L Samson, and P F Schendel
October 1982, Proceedings of the National Academy of Sciences of the United States of America,
M Defais, and P Jeggo, and L Samson, and P F Schendel
September 1973, FEBS letters,
M Defais, and P Jeggo, and L Samson, and P F Schendel
January 1978, Izvestiia Akademii nauk SSSR. Seriia biologicheskaia,
M Defais, and P Jeggo, and L Samson, and P F Schendel
January 2002, Environmental and molecular mutagenesis,
M Defais, and P Jeggo, and L Samson, and P F Schendel
January 1975, Izvestiia Akademii nauk SSSR. Seriia biologicheskaia,
M Defais, and P Jeggo, and L Samson, and P F Schendel
February 1974, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
M Defais, and P Jeggo, and L Samson, and P F Schendel
May 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!