Sulfhydryl groups in photosynthetic energy conservation. VI. Subunit distribution of sulfhydryl groups and disulfide bonds in chloroplast coupling factor and ATPase activity. 1980

R A Ravizzini, and C S Andreo, and R H Vallejos

The subunit distribution of sulfhydryl groups and disulfide bonds of spinach chloroplasts coupling factor I has been determined. Native coupling factor I with a latent ATPase activity has eight sulfhydryl groups distributed 4 : 2 : 0 : 0 : 2 in the alpha, beta, gamma, delta and epsilon subunits, respectively. Heat treatment of coupling factor I, in addition to the activation of its ATPase activity, induces a dithiol-disulfide interchange between the gamma and the alpha subunit, changing the sulfhydryl groups' distribution to 2 : 2 : 2 : 0 : 2. Reduction of disulfide bonds of coupling factor I by dithioerythritol during heat treatment gives a subunit distribution of 4 : 4 : 4 : 0 : 2, suggesting that native coupling factor I has three disulfide bonds, two in the gamma subunit and one in one of the beta subunits. The results suggest an asymmetric redox state of some of the subunits of coupling factor I and an asymmetric positioning of some of them in the molecular structure of coupling factor I.

UI MeSH Term Description Entries
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D004226 Dithioerythritol A compound that, along with its isomer, Cleland's reagent (DITHIOTHREITOL), is used for the protection of sulfhydryl groups against oxidation to disulfides and for the reduction of disulfides to sulfhydryl groups. 2,3-Dihydroxy-1,4-dithiolbutane,Dithioerythreitol
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D013438 Sulfhydryl Compounds Compounds containing the -SH radical. Mercaptan,Mercapto Compounds,Sulfhydryl Compound,Thiol,Thiols,Mercaptans,Compound, Sulfhydryl,Compounds, Mercapto,Compounds, Sulfhydryl
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

R A Ravizzini, and C S Andreo, and R H Vallejos
September 1989, FEBS letters,
R A Ravizzini, and C S Andreo, and R H Vallejos
February 1982, The Journal of biological chemistry,
R A Ravizzini, and C S Andreo, and R H Vallejos
March 1966, Archives roumaines de pathologie experimentales et de microbiologie,
R A Ravizzini, and C S Andreo, and R H Vallejos
July 1954, The Journal of investigative dermatology,
R A Ravizzini, and C S Andreo, and R H Vallejos
May 1989, The Journal of biological chemistry,
R A Ravizzini, and C S Andreo, and R H Vallejos
June 1984, The Journal of biological chemistry,
R A Ravizzini, and C S Andreo, and R H Vallejos
January 1981, The Journal of biological chemistry,
R A Ravizzini, and C S Andreo, and R H Vallejos
January 1976, Biochemistry,
R A Ravizzini, and C S Andreo, and R H Vallejos
December 1954, The American journal of physiology,
Copied contents to your clipboard!