Recognition of duplex DNA containing single-stranded regions by recA protein. 1980

S C West, and E Cassuto, and J Mursalim, and P Howard-Flanders

Genetic recombination in Escherichia coli requires recA protein, the product of the recA+ gene. In this paper we show that purified recA protein, which binds strongly to denatured DNA, cooperatively recognizes DNA containing short single-stranded regions. The interaction of varying amounts of recA protein with DNA molecules was investigated by measuring its DNA-dependent ATPase activity. In 3mM Mg2+, the ATPase activity was stimulated by excess single-stranded DNA and was minimal with either intact circular or blunt-ended linear duplexes. Single-strand gaps of about 30 nucleotides were sufficient to increase the ATPase activity to a level almost as great as that observed with single-stranded DNA. Sedimentation studies at neutral pH showed cooperative binding of recA protein to single-stranded DNA or to duplex DNA containing single-stranded regions. In the presence of ATP, an intermediate rate of sedimentation was observed; in contrast, adenosine 5'-gamma-thiotriphosphate (ATP[S]) caused the formation of fast-sedimenting DNA-protein complexes. Gapped plasmid DNA plus recA protein and ATP[S] formed large aggregates containing thousands of molecules. Complex formation and stimulation of the ATPase activity of recA protein with duplex DNA containing single-stranded regions indicates that recA protein may change the conformation of the normally duplex molecules to a conformation prepared for homologous pairing.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

S C West, and E Cassuto, and J Mursalim, and P Howard-Flanders
January 1993, Journal of molecular biology,
S C West, and E Cassuto, and J Mursalim, and P Howard-Flanders
July 1981, The Journal of biological chemistry,
S C West, and E Cassuto, and J Mursalim, and P Howard-Flanders
June 1986, The Journal of biological chemistry,
S C West, and E Cassuto, and J Mursalim, and P Howard-Flanders
November 1995, Molecular & general genetics : MGG,
S C West, and E Cassuto, and J Mursalim, and P Howard-Flanders
July 1987, The Journal of biological chemistry,
S C West, and E Cassuto, and J Mursalim, and P Howard-Flanders
July 1987, The Journal of biological chemistry,
S C West, and E Cassuto, and J Mursalim, and P Howard-Flanders
September 1981, Journal of molecular biology,
S C West, and E Cassuto, and J Mursalim, and P Howard-Flanders
January 1992, Journal of molecular biology,
S C West, and E Cassuto, and J Mursalim, and P Howard-Flanders
February 1986, Nucleic acids research,
Copied contents to your clipboard!