Physiological and histochemical characteristics of motor units in cat tibialis anterior and extensor digitorum longus muscles. 1980

R P Dum, and T T Kennedy

1. Intracellular recording and stimulation techniques were used to study the normal motor-unit population of tibialis anterior (TA) and extensor digitorum longus (EDL) muscles in the cat. Histochemical staining of the whole muscle and glycogen depletion of single motor units were performed. These results may be compared to those of their extensor antagonist, medial gastrocnemius (MG), as reported in studies by Burke and co-workers (7, 11, 13). 2. On the basis of two physiological properties, "sag" and fatigue resistance, the motor units in both TA and EDL could be classified into the same categories (types FF, F(int), FR, and S) as in MG (11). In contrast to MG, TA and EDL had nearly twice as many type-FR motor units and only half as many type-S motor units. 3. Glycogen depletion of representative single motor units of types FF and FR suggests a close correspondence between the physiological classification and a unique histochemical profile. No type-S units were depleted. 4. On the basis of histochemical staining, the muscle fibers in TA were presumed to belong to type-FF, -FR, or -S motor units. TA had a higher proportion of type-FR and a lower proportion of type-S muscle fibers than are found in MG. A striking feature was the variation in the proportion of each fiber type in different regions of TA. The anterolateral portion had mostly types FF and FR, while the posteriomedial portion had more types FR and S. 5. The twitch time to peak (TwTP) of isometric motor-unit contractions was generally quite fast with none having TwTP greater than 55 ms. The mean TwTP (not in EDL) and the mean tetanic tension of each motor-unit type were significantly different from each other. Most of the motor units exhibited significant postetanic potentiation of twitch tension and a corresponding lengthening of half-relaxation time and to a lesser degree, twitch contraction time. 6. There was a significant relationship between the inverse of motoneuronal input resistance and either tetanic tension or twitch contraction time. These relationships were not apparent when axonal conduction velocity rather than input resistance was used as an index of motoneuron size. The mean input resistances of the three major motor-unit types were significantly different while the mean conduction velocities of types FF and FR were nearly identical. A weak positive correlation was observed between the TwTP and the afterhyperpolarization of TA and EDL motoneurons. 7. In general, the mechanical characteristics and intrinsic motoneuronal properties of TA and EDL appear to parallel the organization of their extensor antagonist, MG, with some important quantitative differences that may reflect their different functional roles.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D006003 Glycogen
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

R P Dum, and T T Kennedy
July 1989, Journal of neurophysiology,
R P Dum, and T T Kennedy
March 1997, Journal of applied physiology (Bethesda, Md. : 1985),
R P Dum, and T T Kennedy
January 1998, Canadian journal of physiology and pharmacology,
R P Dum, and T T Kennedy
December 1999, Anatomia, histologia, embryologia,
R P Dum, and T T Kennedy
March 1993, The Anatomical record,
Copied contents to your clipboard!