On the fidelity of DNA replication. The accuracy of Escherichia coli DNA polymerase I in copying natural DNA in vitro. 1980

T A Kunkel, and L A Loeb

The accuracy with which Escherichia coli DNA polymerase I (Pol I) copies natural DNA in vitro has been determined. When phi X174 viral DNA containing an amber mutation (am3) is primed with a single restriction endonuclease fragment, copied in vitro with Pol I and then expressed in E. coli spheroplasts (Weymout, L. A., and Loeb, L. A. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 1924), the reversion frequency of this DNA is greater than that of uncopied DNA. This change in reversion frequency can be increased by selectively increasing the concentration of either dATP or dCTP relative to the other deoxyribonucleotide substrates. DNA sequence analyses of revertants obtained from substrate pool bias experiments demonstrates that the revertants contain the selectively biased nucleotide as an incorrect substitution at position 587 of the am3 codon. We have analyzed the product of the in vitro Pol I reaction using neutral and alkaline sucrose gradients. Fifty per cent of the input phi X174 DNA template molecules are copied past the am3 site. The phenotypic expression of the product (revertant) strand in the spheroplast assay was estimated using a model heteroduplex molecule similar in structure to the product of the reaction and containing a single base mismatch (A:A or A:C) at position 587. Using these data, and by extrapolation from pool bias experiments, we estimate the error rate of Pol I in Mg2+-activated reactions using equimolar concentrations of the four deoxynucleotide substrates is 1/680,000 for an A:C mispair and < 1/6,300,000 for an A:A mispair at position 587 of the am3 codon in phi X174 DNA.

UI MeSH Term Description Entries
D010584 Bacteriophage phi X 174 The type species of the genus MICROVIRUS. A prototype of the small virulent DNA coliphages, it is composed of a single strand of supercoiled circular DNA, which on infection, is converted to a double-stranded replicative form by a host enzyme. Coliphage phi X 174,Enterobacteria phage phi X 174,Phage phi X 174,phi X 174 Phage,Phage phi X174
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004256 DNA Polymerase I A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. DNA Polymerase alpha,DNA-Dependent DNA Polymerase I,Klenow Fragment,DNA Pol I,DNA Dependent DNA Polymerase I,Polymerase alpha, DNA
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D013104 Spheroplasts Cells, usually bacteria or yeast, which have partially lost their cell wall, lost their characteristic shape and become round. Spheroplast
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

T A Kunkel, and L A Loeb
January 1979, The Journal of biological chemistry,
T A Kunkel, and L A Loeb
December 2009, Molecular microbiology,
T A Kunkel, and L A Loeb
January 1979, The Journal of biological chemistry,
T A Kunkel, and L A Loeb
March 1973, Nature: New biology,
T A Kunkel, and L A Loeb
November 2012, FEMS microbiology reviews,
T A Kunkel, and L A Loeb
January 1983, The EMBO journal,
T A Kunkel, and L A Loeb
August 1974, Nature,
T A Kunkel, and L A Loeb
July 2004, Journal of bacteriology,
T A Kunkel, and L A Loeb
April 1997, Journal of bacteriology,
T A Kunkel, and L A Loeb
October 1992, Journal of bacteriology,
Copied contents to your clipboard!