A comparison of vesicles derived from terminal cisternae and longitudinal tubules of sarcoplasmic reticulum isolated from rabbit skeletal muscle. 1980

C F Louis, and P A Nash-Adler, and G Fudyma, and M Shigekawa, and A Akowitz, and A M Katz

Sarcoplasmic reticulum vesicles were separated into heavy (derived from terminal cisternae) and light (derived from longitudinal tubules) fractions, according to Meissner [Biochim. Biophys. Acta, 389, 51-68 (1975)]. The similar Ca2+ sensitivities of phosphoprotein formation, ATPase activity and calcium uptake, and the similar phosphoprotein turnover rates (ATPase/phosphoprotein formation) of both fractions indicate that the same ATPase enzyme is present in the terminal cisternae and longitudinal sarcoplaxmic reticulum. The higher V for Ca2+-activated ATPase activity and calcium uptake in the light fraction correlated with the higher concentration of ATPase enzyme per mg of membrane protein in this fraction. In both the presence and absence of calcium-precipitating anions, the light fraction stored more calcium than the heavy. The Ca2+ dependence of calcium release after addition of EGTA appeared similar in both fractions, but the rate of calcium release was more rapid in the light fraction. These findings suggest that calcium release may occur more rapidly from longitudinal than terminal cisternae portions of the sarcoplasmic reticulum and that calcium release, like calcium uptake, may be mediated by the ATPase enzyme in the sarcoplasmic reticulum membrane. Although the activation energies for Ca2+-activated ATPase activity above and below the transition temperature were significantly different for the heavy and light fractions, their transition temperatures were similar. Partial purification of the ATpase enzyme by deoxycholate treatment modified the activation energies of the light but not the heavy fraction and caused the activation energies to become similar. The phosphoprotein levels of heavy and light vesicles did not become similar after deoxycholate treatment, although gel electrophoretograms indicated both samples contained > 90% ATPase protein. These results indicate the protein-lipid associations in these two fractions may be different.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010070 Oxalates Derivatives of OXALIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are derived from the ethanedioic acid structure. Oxalate,Ethanedioic Acids,Oxalic Acids,Acids, Ethanedioic,Acids, Oxalic
D010750 Phosphoproteins Phosphoprotein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums

Related Publications

C F Louis, and P A Nash-Adler, and G Fudyma, and M Shigekawa, and A Akowitz, and A M Katz
October 1982, Journal of biochemistry,
C F Louis, and P A Nash-Adler, and G Fudyma, and M Shigekawa, and A Akowitz, and A M Katz
January 1988, Methods in enzymology,
C F Louis, and P A Nash-Adler, and G Fudyma, and M Shigekawa, and A Akowitz, and A M Katz
September 1984, The Journal of cell biology,
C F Louis, and P A Nash-Adler, and G Fudyma, and M Shigekawa, and A Akowitz, and A M Katz
January 1989, The International journal of biochemistry,
C F Louis, and P A Nash-Adler, and G Fudyma, and M Shigekawa, and A Akowitz, and A M Katz
September 2003, The Journal of membrane biology,
C F Louis, and P A Nash-Adler, and G Fudyma, and M Shigekawa, and A Akowitz, and A M Katz
August 1979, Archives internationales de physiologie et de biochimie,
C F Louis, and P A Nash-Adler, and G Fudyma, and M Shigekawa, and A Akowitz, and A M Katz
December 1986, Biochemistry,
C F Louis, and P A Nash-Adler, and G Fudyma, and M Shigekawa, and A Akowitz, and A M Katz
October 1988, FEBS letters,
C F Louis, and P A Nash-Adler, and G Fudyma, and M Shigekawa, and A Akowitz, and A M Katz
November 1996, The Journal of membrane biology,
C F Louis, and P A Nash-Adler, and G Fudyma, and M Shigekawa, and A Akowitz, and A M Katz
October 1987, Archives of biochemistry and biophysics,
Copied contents to your clipboard!